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MOLECULAR SPECTROSCOPY WORKBENCH

Combined Raman and  
Photoluminescence Imaging of 
Two-Dimensional WS2

Combined Raman and photolu-
minescence (PL) spectroscopy 
and imaging are used to examine 
the spatial variation of solid-state 
structure and electronic character 
of two-dimensional (2-D) tung-
sten disulfide (WS2) crystals. Si-
multaneous mapping acquisition 
of PL and Raman scattering from 
the same spatial locations provide 
complementary structural informa-
tion and a way of rendering com-
binative Raman and PL spectral 
images of thin film 2-D crystals  
in general, and WS2 in particular.

David Tuschel

Graphene is probably the 
m o s t  w e l l - k n o w n o f  t h e 
emerging class of materi-

als known as two-dimensional (2-D) 
crystals. These materials are consti-
tuted by monolayer to few-layered 
structures. In recent years, new inor-
ganic 2-D materials have emerged, 
i n c l u d i n g  M o S 2,  M o S e 2 ,  W S 2,  
and WSe2, among others. These 
materials have attracted significant 
interest because of their special 
electronic, optical, and optoelec-
tronic properties in the monolayer 
to few-layer forms that are different 
from those of the bulk form (1,2).  
One of the most s igni f icant di f-
ferences of the 2-D crystals is the 
t rans format ion f rom an indirec t 
band gap semiconductor in the bulk 
to a direct band gap semiconductor 
in the monolayer to few-layer crys-
tals. Thus, the fabrication of opto-
electronic devices in addition to fa-
miliar integrated electronic circuitry 
is envisioned for these materials.  
These optoelectronic characteristics 
have prompted substantial research 
to discover the means of fabrication 
and the physical characteristics of 
2-D crystals to produce integrated 
e l e c t ro n i c  a n d  o pto e l e c t ro n i c  
devices (3).

Raman and Photoluminescence 
(PL) Imaging of 2-D WS2
You may have observed the spatially 
varying colors in ref lec ted white 
light images of 2-D crystals, and so 
there have been developments to 
use optical microscopy to rapidly 
identify the number of molecular lay-
ers that make up the 2-D crystal (4).  
Previously, we reported on the use 
of Raman and PL spectroscopy and 
imaging of few-layer MoS2 to iden-
tify spatial variation in the number of 
layers and strain (5–7). In this install-
ment of “Molecular Spectroscopy 
Workbench,” we focus on combined 
Raman and PL imaging for the char-
acterization of 2-D WS2 crystals.

Here, we apply Raman and PL 
spectral imaging to reveal the spa-
tially varying structural dif ferences 
that are not observed when view-
ing the crystals with reflected white 
light microscopy. A collection of hy-
perspectral data acquired by spec-
tral mapping of a 2-D WS2 crystal is 
shown in Figure 1. A reflected white 
light image of the crystal appears in 
the lower right-hand corner, and a 
combinative Raman and photolumi-
nescence image corresponding to 
the reflected light image appears to  
its left. The plot on the upper left 
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consists of all the spectra acquired over the image area, 
and the upper right-hand plot shows the single spec-
trum associated with the cross-hair location in the spec-
tral and reflected light images. Note that each spectrum 
covers a spectral range that includes contributions from 
both Raman scattering and PL. The Raman and PL data 

were acquired using 532 nm excitation in conjunction 
with a 300 gr/mm grating and a 50x Olympus objective 
and by moving the stage in 1.5 µm increments over an 
area of approximately 100 µm x 100 µm. The combina-
tive spectral image is rendered through a color-coded 
plot of the spatial variation of Raman (green) and PL 
(red) signal strength within the corresponding color 
bracketed Raman shift positions shown in the two upper 
traces. The combinative Raman and PL image is actu-
ally a rendering of normalized (minimum to maximum) 
signal strength for the Raman band at 349 cm-1 and the 
PL band centered primarily at 630 nm as a function of 
position on the sample. The hyperspectral data clearly 
reveal the nonuniformity of the PL corresponding to a 
spatial variation of the intensity and peak position. Con-
sequently, PL images could be rendered of the spatially 
varying peak position along with that of spatially varying 
signal strength.

The triangular crystal consists primarily of a single 
layer of WS2 with a three-pronged two-layer forma-
tion growing out from the center. The light blue tri-
angle in the center of the reflected white light image 
consists of multiple layers of WS2. The three-pronged  
two-layer formation appears darker purple in the re-
flected white light image and brighter green in the com-
binative Raman and PL spectral image, because of the 
greater Raman scattering and attenuated PL from the 
two-layer structure. The combinative spectral image is 
rendered through a color-coded plot of Raman (green) 
and PL (red) signal strength where each component’s 
color intensity scale is normalized minimum to maximum 
to reveal the spatially varying contrast of both spectral 
components. Were the color intensities to be plotted on 
the same absolute scale and not normalized, the image 
would essentially consist of only the PL contribution 
because of the weak Raman scattering strength relative 
to that of the far more intense PL.

The separate Raman and PL images in Figure 2 show 
the spatially varying differences in solid state structure 
as revealed through vibrational and electronic spec-
troscopy, respectively. The three-pronged two-layer for-
mation appears brighter in the Raman image than the 
rest of the single-layer crystal, which appears uniform 
and dark green. The triangular feature in the center ap-
pears dark, consistent with all past reporting that many 
layer structures have been shown to generate much 
weaker Raman scattering than either single or few-layer  
2-D crystals.

In  cont ras t  w i th the Raman image,  the three -
pronged two-layer formation appears dark in the PL 
image because of ver y weak emission. The dimin-
ished PL in the surrounding single-layer area grows 
progressively brighter towards the crystal perimeter.  
Furthermore, dark lines indicating attenuated PL in the 

(a) 630 nm (b)

(c) (d)

FIGURE 1: (a) hyperspectral data set, (b) cursor spectrum, 
(c) combinative Raman and photoluminescence image, 
and (d) reflected white light image of 2-D WS2 crystal.
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single-layer area bisect the three 
prongs of the two-layer formation. 
One can envision a triangle formed 
by lines perpendicular to the tips of 
the three two-layer prongs. A spatial 
variation of attenuated PL appears 
within that triangle. Outside of that 
triangle boundary, the PL is uniformly 
strong. Nevertheless, the most strik-
ing contrast in the PL image appears 
because the two-layer formation 
yields very weak PL emission relative 
to that of the single-layer portion. 
Also, note that the large triangle in 
the PL image is smaller than that of 
the Raman image. That is because 
the PL is attenuated at the perim-
eter of the crystal. When these two 
images are overlaid with normalized 
intensities, one obtains the combina-
tive Raman and PL image shown in 
Figure 2c. The contrasting colors are 
the result of the spatially varying rel-
ative contributions of the Raman and 
PL signals. Moreover, the Raman and 
PL signal strengths are each normal-
ized (minimum to maximum). That is 
why the perimeter of the crystal ap-
pears green from strong Raman scat-
tering and because of the absence of 
or significantly attenuated PL at that 
location relative to the interior of the 
single-layer formation.

A second set of Raman, PL, combi-
native Raman and PL, and reflected 
white l ight images f rom another 
WS2 crystal is shown in Figure 3. 
This crystal consists entirely of two 
single-layers of WS2 that have grown 
into each other. Consequently, the 
Raman image in Figure 3a appears 
almost entirely uniform except for 
the dim line at the interface of the 
crystal growth and the small dark 
spot at the center that spatially cor-
responds to the spot in the center 
of the reflected white light image.  
That small spot takes on signif i -
cance in the PL image of Figure 3b 
that appears dark and slightly larger 
than that in the Raman and reflected 
white light images. Fur thermore, 
dark lines of attenuated PL propa-
gate from the center spot to each 

of the corners of the two crystals in 
a manner similar to that observed 
in the single crystal of Figure 2b.  
The contrast between the uniformity 
and spatial variations of the Raman 
and PL images, respectively is strik-
ing. When these two images are 
overlaid with normalized intensities, 
one obtains the combinative Raman 
and PL image shown in Figure 3c.

Here, the minimum-to-maximum 
color contrast generates a green-
yellow combinative Raman and PL 
image, whereas that of Figure 2c is 
green-orange. The reason for this 
dif ference in color contrast is be-
cause of the normalized intensity 
color scaling. The Raman image of 
Figure 3a is of nearly uniform inten-
sity, thereby generating a uniformly 

Phone: 1-800-292-6141 | info@leco.com
www.leco.com | © 20 Corporation21 LECO
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flat green Raman background for the 
combinative Raman and PL image. 
However, the Raman image of Figure 2a 
has spatially varying intensity because 
of the presence of both single and two-
layer structures. Consequently, the rel-
ative Raman signal contribution under 
the single-layer formation contributes 
less than under the three two-layer 
prongs in the combinative Raman and 

PL image of Figure 2c. The normalized 
PL signal in Figure 2c is relatively stron-
ger than that of the Raman scattering 
of the single-layer formation resulting 
in the orange color in the combinative 
Raman and PL image. Such color con-
trasts demonstrate the effectiveness of 
combined imaging to reveal the rela-
tive Raman to PL signal strengths in 
different crystals.

Conclusion
Raman and PL spec troscopy re -
veal dif ferent aspects of the solid-
s tate s truc ture of 2-D mater ials. 
Combined Raman and PL imaging 
per formed s imul taneous ly  w i th 
one instrument reveals the spatial 
variation of the solid-state struc-
ture and elec tronic proper ties of 
2-D cr ystals that is not revealed 
in ref lec ted white l ight imaging. 
Fur thermore, examples of com-
binative Raman and PL images of 
WS2 cr ystals reveal the var iation 
of Raman to PL signal s t rengths 
within and among different crystals.  
The ability to image crystals through 
vibrational and electronic spectros-
copy should allow materials scien-
tists to better design and fabricate 
electronic and optoelectronic de-
vices based upon 2-D crystals.
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ing authorship of this column with 
Fran. He can be reached at: Spec-
troscopyEdit@MMHGroup.com  ●
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FIGURE 3: Spectral and reflected white light imaging of WS2: (a) Raman, (b) 
photoluminescence, (c) combinative Raman and photoluminescence, and (d) 
reflected white light image.
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ATOMIC PERSPECTIVES

Heavy Metals in Pet Food:  
Changes in Heavy Metal Contamination 
in Pet Food Over the Past Decade

Pet food is a multibillion dollar per 
year business that affects busi-
nesses and pet owners on a daily 
basis. Along with increased growth, 
there has been increased contro-
versy. The melamine pet food scare 
of 2007 affected millions of people 
and their pets, along with the pet 
food industry. The pet food scare 
highlighted the potential for con-
taminants and controversial ingre-
dients that could be contained in 
pet food. In addition to organic 
chemical contaminants and ad-
ditives, there is also the possibil-
ity of toxic elemental contamina-
tion from protein sources, fillers, 
and manufacturing processes.  
Therefore, the search for “healthy” 
pet food goes beyond the choice 
of a name brand food or nutritious 
ingredients on a label.

 Patti Atkins, Tina Restivo, and Bob Lockerman  

Ten years ago, SPEX CertiPrep, 
first introduced its popular 
study on “Heavy Metals in Pet 

Food,” which was featured in Spec-
troscopy (1,2). The purpose of this 2009 
study was to examine pet foods from a 
variety of sources to determine if there 
were potentially toxic elements pres-
ent in the foods. Many of the pet foods 
sampled showed significant concentra-
tions of various toxic metals. In many 
cases, the concentrations exceeded 
the extrapolated human limit values 
calculated to pet-size dosages. 

In the intervening 10 years, the Food 
Safety Modernization Act (FSMA) was 
enacted, and pet food became one of 
the targets of scrutiny. This new 2019 
study was produced as a joint effort be-
tween SPEX companies and CEM Cor-
poration, and revisits pet food brands 
first analyzed in 2009, while looking at 
new brands that have emerged after the 
2007 pet food crisis and later enactment 
of the FSMA, to determine whether 
heavy metal contamination has signifi-
cantly changed in the decade following 
the first study. Using updated cryogenic 
and microwave technologies, samples 
were tested by inductively coupled 
plasma (ICP) and inductively coupled 
plasma–mass spectrometry (ICP–MS) 
to determine heavy metal content, and 

these results were compared to our 
previous 2009 study. 

Recently, I presented a summary of 
our findings in an interview for Spec-
troscopy (3). The purpose of this article 
is to expand on those findings.

History
Some of the first commercial dog food 
has been credited to a businessman in 
the 1860s who developed a dog bis-
cuit after he witnessed dogs being fed 
leftover hardtack biscuits in the ports 
of England. His idea later came to the 
United States in the late 1890s, but the 
canned pet food we know today did 
not exist extensively until after World 
War I (WWI). Ken-L-Ration brand (1922) 
was the first commercial pet food sold 
because of an excess of horse meat 
after WWI. In the early part of the 
20th century, the U.S. Food and Drug 
Administration (FDA) did not exist,  
and only human food and medicine 
was under consideration of the 1906 
Pure Food and Drug Act. 

The first controls of pet food came 
under the 1938 Federal Food, Drug, 
and Cosmetic Act, which only required 
that pet food be safe to eat, produced 
under sanitary conditions, free from 
harmful substances, and labelled 
truthfully as to its quantity, identity,  
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manufacturing process, ingredients 
(listed by weight), and nutritional infor-
mation. The next significant advance of 
pet food also came after a major war 
when the consumer canned and pack-
aged food companies that grew out of 
war rations, then transitioned to a post 
war economy. These companies capi-
talized on the ability to use human food 
by-products to create pet food. 

Extruded dry kibble began to ap-
pear in the mid-1950s, and the pet food 
industry flourished and became main-
stream, ultimately growing into a mul-
tibillion dollar a year global industry.  
The 1960s saw increases in specialized 
pet foods and an increase in brands 
and product lines for established com-
panies. The first big public scare in the 
pet food industry started with the 2007 
discovery of melamine and cyanuric 
acid in a wide range of pet food variet-
ies and brands. Early in 2007, there were 
hundreds of pet deaths and illnesses 
because of kidney failure around the 
world, which was later traced back to 
illegal protein adulteration. Chinese 
raw material manufacturers had added 
the melamine to the pet food to arti-
ficially increase the protein content.  
Over 5000 product recalls were an-
nounced across multiple brands, man-
ufacturers, and suppliers, linked to al-
most 10,000 pet deaths and illnesses. 

2009 Heavy Metals Study
For years after the melamine pet food 
disaster, pet owners continued to be 
concerned about their pet’s food.  
The initial disaster happened because 
of terrible oversight of supply chains 
and lack of testing for harmful ingre-
dients. The pet food industry claimed 
that, as a result of the melamine 
scare, there was more active polic-
ing in their industry and products,  
but questions still remained whether 
pet food was safe or not. In 2009, 
SPEX CertiPrep made a decision to 
look at the elemental content of pet 
food. SPEX CertiPrep was a close-knit 
family company whose employees 
and owners were dedicated pet own-
ers. The study solicited pet food from 
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FIGURE 1: A 2009 comparison: uranium vs. beryllium and thorium.

TABLE I: Cryogenic grinding mill operating conditions for dry pet food

Parameter Value

Precooling time 5 min

Grinding time 2 min

Cooling time 1 min

Number of cycles 3

Rate or frequency 12 Hz

TABLE II: Comparison of concentration of toxic metals 2009 and 2019

Element
2009 Pet 
Food Min 

(ppb)

2019 Pet 
Food Min 

(ppb)

2009 Pet 
Food Max 

(ppb)

2019 Pet 
Food Max 

(ppb)

Al 300 390 215000 86302

As 4 20 290 687

Be 2 ND 74 114

Cd 2 ND 130 152

Co 23 70 920 1343

Cr 15 397 2500 34191

Hg ND Not reported 55 Not reported

Ni 48 354 3200 5879

Pb 3 16 5900 515

Sb 1 ND 970 318

Se 64 190 1500 1068

Sn 6 ND 9400 143

Th ND ND 90 147

Tl 1 ND 10 28

U ND ND 860 1699

V 5 43 7400 3339
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all the employees, and purchased 
food from local pet stores, grocer-
ies, dollar stores, and supercenters.  
We decided to investigate all price 
ranges, from the cheapest dollar store 
food to the boutique gourmet brands 
sold in specialty markets. The original 
study was conducted in the winter of 
2009–2010, covering almost sixty sam-
ples. The samples included approxi-
mately equal amounts of cat and dog 
foods, as well as equal amounts of wet 
canned food and dry kibble. 

Once the foods had been grounded, 
digested, and tested, it was found that 
there were substantially high amounts 
(up to ppm levels) of heavy metals 
and wear metals (from the processing 
equipment) in pet food, especially in 
dry kibbles. The amount of food that 

owners fed their pets increased the ex-
posure of pets to higher levels of po-
tentially toxic metals. Despite the fact 
that pet food had been under the con-
trol of the FDA since 1938, there was no 
guidance in 2009 regarding the limits 
for the most toxic elements to dogs 
and cats. Instead, the SPEX CertiPrep 
study used human exposure guidelines 
issued by the EPA and scaled them to a 
standardized size (50 lbs for a dog and 
10 lbs for a cat). 

In the decade since the first heavy 
metals study, the FSMA was created. 
Pet food fell under the direction of 
the FDA within the FSMA, and it was 
our hope that public awareness of the 
previous pet food regulatory shortfalls 
would be corrected and lower metal 
content would now be seen in pet food.

Experimental
The basic techniques, materials, and 
methods for both the 2009 and 2019 
studies were similar. Differences in the 
studies included the use of updated 
equipment and instrumentation, which 
will be discussed within the “Methods” 
section. For details on the previous 
2009 experimental conditions, please 
refer to the originally published articles 
published in Spectroscopy in 2011 (1,2).

Reagents and Standards
In both the 2009 and 2019 studies, 
concentrated optima-grade nitric acid 
was obtained from Fisher Scientific. 
Deionized water was obtained from an 
in-house laboratory water filtration and 
processing system, which produces de-
ionized water (ASTM I grade).

The SPEX CertiPrep standards (SPEX 
CertiPrep Group) used in both studies 
included: 
•	CLMS-2N: Claritas Multielement So-

lution Standard 
•	(10 mg/L: Ag, Al, As, Ba, Be, Bi, Ca, 

Cd, Co, Cr, Cs, Cu, Fe, Ga, In, K, Li, 
Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, 
V, and Zn) 

•	CL-ICV-1: Claritas Initial Calibration 
Verification 1 

•	(1000 mg/L: Fe, K, Ca, Na, Mg, Sr; 10 
mg/L: Ag, Al, As, Ba, Be, Cd, Co, Cr, 
Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn, 
Th, and U)

•	CLU2-2Y: Claritas Uranium Single Ele-
ment Standard (1000 mg/L)

•	CLHG2-1AY: Claritas Mercury Single 
Element Standard (10 mg/L)

Standards were diluted to µg/kg 
concentrations appropriate for ICP–
MS analysis in 5% nitric acid in deion-
ized water solution to match the acid 
matrix of samples. Standards of 0.1, 
0.4, 1.0, 4.0, and 10 µg/kg, were made 
up in 5% HNO3, and matrix matched 
for ICP–MS calibration.

Blank Preparations
Optima-grade nitric acid used in di-
gestion was added to the deionized 
water blanks prior to analysis in a 
comparable concentration as to the 

TABLE III: Reference dosages (RfD) and tolerable daily intake (TDI) calcu-
lated for a 50 pound (lb.) dog.

Element
EPA Human 
RfD (µg/
kg/day)

EPA Human 
RfD (Per 50 
lbs. Body 
Weight)

WHO Human 
TDI (µg/
kg/day)

WHO Human 
TDI
(Per 50 lbs. 
Body Weight)

As 0.3 7 2.14 49

Be 2 45 - -

Cd 1 23 1 23

Ni 20 454 12 272

Pb - - 3.6 82

Sb 0.4 9 6 136

Tl 0.1 2.3 - -

U 3 68 0.6 14

TABLE IV: Reference dosages (RfD) and tolerable daily intake (TDI) for a 10 
pound (lb.) cat

Cat Limit
EPA Human 

RfD (µg/
kg/day)

EPA Human 
RfD (Per 10 
lbs. Body 
Weight)

WHO Human 
TDI (µg/
kg/day)

WHO Human 
TDI 

(Per 10 lbs. 
Body Weight)

As 0.3 1.4 2.14 9.72

Be 2 9 - -

Cd 1 4.5 1 4.5

Ni 20 91 12 55

Pb - - 3.6 16

Sb 0.4 1.8 6 27

Tl 0.1 0.5 - -

U 3 14 0.6 2.7
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acid concentration found in the pet 
food samples. In addition to water 
blanks, optima-grade nitric acid was 
processed as a sample in the micro-
wave vessel to determine contamina-
tion from the polytetrafluoroethylene 
(PFTE) vessels or any memory effects 
of the previous samples. After each 
pet food sample digestion run, 10 mL 
of nitric acid were digested discarded 
from the microwave vessels to clean 
vessels. A second 10 mL digestion of 
nitric acid was then repeated, and the 
digest was diluted in the same method 
as the pet food samples and treated 
as a vessel blank. 

Sample Collection, 
Preparation, and Digestion
For this investigation, a total of 61 dif-
ferent cat and dog foods were bought 
from local stores or donated by em-
ployees of the SPEX companies and 
CEM Corporation. The samples con-
sisted of dry food varieties. Of the 60 
dry foods, 37 of them were dog food, 
and 23 of them were cat food sam-
ples. The range of quality of the pet 
foods was from “discount” to “gour-
met brands.” Pet food prices ranged 
from the “bargain” store foods priced 
at 0.02¢ per ounce to gourmet or spe-
cialty foods purchased from pet sup-
pliers priced above 0.42¢ per ounce. 
There are 11 samples that were simi-
lar or identical to brands or varieties 
studied in the original 2009 study.

Dry cat and dog food samples 
(10–15 g) were ground to a uniform 
powder in a cryogenic mill (SPEX 
Sam plePre p 6 875D L arg e Dua l 
Freezer/Mill with 6885 mid-size Poly-
Vial). Operating conditions are shown  
in Table 1 

One half gram of the powdered or 
blended sample was digested with 10 
ml of nitric acid in a CEM Mars-6 micro-
wave oven (CEM Corporation) using a 
preprogrammed pet food method. 
After digestion, samples were diluted 
to 50 mL volume with deionized water. 
Prior to analysis, samples were diluted 
to a final concentration of 1000x using 
deionized water.

Instrument Conditions
Primary sample analysis was conducted 
using a PerkinElmer inductively cou-
pled plasma–optical emission spec-
trometer (ICP–OES) (PerkinElmer Inc.). 
The ICP–OES was used to determine 
the macro-elemental composition of 
the foods to select standards which 
would allow for correct matrix interfer-
ences. Elements measured by ICP–OES 
included aluminum, calcium, copper, 

iron, magnesium, manganese, phos-
phorus, potassium, selenium, silicon, 
sodium, sulfur, and zinc. 

All trace element determinations 
were carried out using the Agilent 
7900 ICP–MS (Agilent Technologies). 
It can be seen that multiple isotopes 
were used for many of the elements 
to evaluate the spectral complexity of 
the samples and also for mathemati-
cal equation correction purposes.  
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Nanoscale infrared (nanoIR) spectroscopy has been 
commercialized for a little over 10 years. Since then, atomic 
force microscope infrared (AFM-IR) spectroscopy has seen a 

lot of growth, with dramatic changes in life science applications and 
nanoscale characterization of cells and tissues. 

SPECTROSCOPY: It has been 10 years since the first nanoIR product 
was introduced. What are the main factors that led to the growth 
we've seen in the AFM-IR products Bruker manufactures?

MARCOTT: Originally, from the spectroscopist’s point of view, the ability 
to obtain infrared spectra at spatial resolutions two orders of magnitude 
smaller than the diffraction limit was a tremendous breakthrough.

The spatial resolution of conventional Fourier-transform infrared 
(FTIR) microscopes is about 3 to 10 micrometers or roughly equal to 
the wavelength of light used to make the measurement. In AFM-IR, 
the sharp tip of the atomic force microscope acts as a local detector 
of IR absorbance at the surface of the sample it contacts. When the 
wavenumber of the laser source is in resonance with a molecular 
vibrational frequency, the IR radiation can be absorbed, and the sample 
expands when the molecules return to their ground vibrational state 
after exchanging energy with the sample matrix. This causes the sample 
to thermally expand over an area corresponding to the focused IR laser 
spot size. The AFM cantilever will deflect because the local thermal 
expansion of the material in proximity to the apex of the AFM probe is 
providing significantly higher spatial resolution that is not limited by the 
diffraction limit of the IR wavelength.

A key enabler for the emergence of the AFM-IR technique was the 
availability of reliable, broadly tunable IR laser sources. The ability 
to add nanoscale chemical information to high-resolution spatial 
topography maps opens up a whole new toolbox for developing 
nanomaterials and understanding their structure and properties.

Another key point is that the photothermal AFM-IR signal is directly 
proportional to the exact amount of IR radiation absorbed at a particular 
wavenumber. This means AFM-IR spectra have no band distortions due to 
scattering. Thus, photothermal AFM-IR spectra look identical to thin film 
FTIR spectra collected in transmission and can be digitally searched against 
commercial databases or user generated libraries of reference spectra.

SPECTROSCOPY: What are some of the key technological advances over 
the past 10 years that have led to the growth of AFM-IR technology?

MARCOTT: Many of the technological advances have been the result 
of improved laser sources. For example, the ability to match the 

Nanoscale IR Spectroscopy repetition rate of the pulsed tunable IR source to 
be in resonance with an AFM cantilever ringdown 
frequency improves the sensitivity of AFM-IR by two 
orders of magnitude.

Initially, AFM-IR measurements needed to be made 
in contact mode. Laser sources with faster repetition 
rates enable the measurements to be made in 
tapping mode, which is important because not 
all samples can be measured in contact mode. In 
addition, increased laser-tuning speed has enabled 
measurements to be performed much faster. Also, 
broader spectral tuning ranges that were not 
accessible 10 years ago are now available.

SPECTROSCOPY: Initially, most AFM-IR 
applications were directed toward chemical 
characterization of polymers and other materials. 
What about applications in the life sciences?

MARCOTT: It’s taken longer for life-science 
applications of AFM-IR to take off, but that changed 
dramatically in the past few years with many exciting 
new developments. With traditional commercial FTIR 
microscopes, it was not possible to look at subcellular 
structures, as the typical size of a single cell is about 
the same size or even smaller than a single spatial 
resolution element. In biology, many important 
processes occur at the subcellular level. These can 
now be followed for the first time by AFM-IR.

SPECTROSCOPY: What are some examples 
of recent work in the area of nanoscale 
characterization of cells and tissue using AFM-IR?

MARCOTT: Protein misfolding is one area that is 
important to understand as it relates to the developments 
of fibrils found in diseases like Alzheimer's, Parkinson's, 
and Huntington's. With AFM-IR, it's possible to 
characterize the protein secondary structure of individual 
plaque fibrils and their precursors, which has provided 
insights into the mechanism of fibril formation.

It has recently been demonstrated that protein 
secondary structure can even be determined for a 
single protein molecule. Much of this pioneering work 
was done by Professor Francesco Simone Ruggeri, 
now at Wageningen University in the Netherlands.

There are many other examples of AFM-IR studies of 
cells and tissues. For example, in a recent paper from 
Monash University, AFM-IR probed the phenotype 
of the malaria parasite during its development. The 
ability to monitor in-vivo changes during cellular 
processes in bacteria at the nanoscale has also been 
demonstrated by the Monash group.

This opens up a new platform to study 
environmental influences and other factors that 
affect bacterial chemistry, including antimicrobial 
resistance detection at the single bacteria level. In a 
recent paper from the University of Sydney, AFM-IR 
provided unparalleled nanoscale characterization of 
the physical and chemical composition of individual 
liposomes encapsulating ciprofloxacin, including the 
successful differentiation of empty liposomes from 
liposomes encapsulating ciprofloxacin in dissolved 
and nanocrystalline form.

Another paper from the Polish Academy of Science 
showed the AFM-IR technique can be a powerful 
tool for tracking biomedical changes of marginal 
and neoplasm tissues, revealing crucial details about 
the mechanism of pathological state development 
not observable using conventional vibrational 
spectroscopic methods. These are just a few 
examples of exciting applications of AFM-IR to the 
characterization of cells and tissues.

SPECTROSCOPY: Much biological activity occurs in 
the presence of water. Are there recent advances 
that allow for AFM-IR measurements to be made 
in fluids?

MARCOTT: There's an excellent 2018 paper 
in ACS Nano in which the authors discuss a 
significant extension of nanoscale polypeptide 
conformational analysis to aqueous environments. 
Proteins are central to essentially all molecular 
processes and living organisms, typically carrying 
out their activities by folding to well-defined 
three-dimensional structures and by binding 
to other molecular species to form functional 
complexes. IR spectroscopy is well-established as an 
important measurement capability for chemically 
characterizing the secondary structure of proteins 
both in solution and in the solid state.

Differences in the Amide I band contour indicate 
the presence of different secondary structures in the 
protein. AFM-IR has been shown to be very sensitive to 
protein secondary structures at the nanoscale, but until 
recently, could only be performed on dried materials. 
There's always a concern that drying out the protein-
containing material may result in a confirmation 
change in the protein backbone structure.

The new approach and results described in this ACS 
Nano paper show that it is now possible to generate 
nanoscale-resolved IR spectra and maps, in air and 
water with comparable spectral band contours, 
signal-to-noise ratio, and lateral spatial resolution.
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now at Wageningen University in the Netherlands.

There are many other examples of AFM-IR studies of 
cells and tissues. For example, in a recent paper from 
Monash University, AFM-IR probed the phenotype 
of the malaria parasite during its development. The 
ability to monitor in-vivo changes during cellular 
processes in bacteria at the nanoscale has also been 
demonstrated by the Monash group.

This opens up a new platform to study 
environmental influences and other factors that 
affect bacterial chemistry, including antimicrobial 
resistance detection at the single bacteria level. In a 
recent paper from the University of Sydney, AFM-IR 
provided unparalleled nanoscale characterization of 
the physical and chemical composition of individual 
liposomes encapsulating ciprofloxacin, including the 
successful differentiation of empty liposomes from 
liposomes encapsulating ciprofloxacin in dissolved 
and nanocrystalline form.

Another paper from the Polish Academy of Science 
showed the AFM-IR technique can be a powerful 
tool for tracking biomedical changes of marginal 
and neoplasm tissues, revealing crucial details about 
the mechanism of pathological state development 
not observable using conventional vibrational 
spectroscopic methods. These are just a few 
examples of exciting applications of AFM-IR to the 
characterization of cells and tissues.

SPECTROSCOPY: Much biological activity occurs in 
the presence of water. Are there recent advances 
that allow for AFM-IR measurements to be made 
in fluids?

MARCOTT: There's an excellent 2018 paper 
in ACS Nano in which the authors discuss a 
significant extension of nanoscale polypeptide 
conformational analysis to aqueous environments. 
Proteins are central to essentially all molecular 
processes and living organisms, typically carrying 
out their activities by folding to well-defined 
three-dimensional structures and by binding 
to other molecular species to form functional 
complexes. IR spectroscopy is well-established as an 
important measurement capability for chemically 
characterizing the secondary structure of proteins 
both in solution and in the solid state.

Differences in the Amide I band contour indicate 
the presence of different secondary structures in the 
protein. AFM-IR has been shown to be very sensitive to 
protein secondary structures at the nanoscale, but until 
recently, could only be performed on dried materials. 
There's always a concern that drying out the protein-
containing material may result in a confirmation 
change in the protein backbone structure.

The new approach and results described in this ACS 
Nano paper show that it is now possible to generate 
nanoscale-resolved IR spectra and maps, in air and 
water with comparable spectral band contours, 
signal-to-noise ratio, and lateral spatial resolution.

http://www.bruker.com
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TABLE V: Table of 2019 select toxic metal concentrations in 3 cups of dry dog food (in ug)

2019 
Samples 
(µg/serving)

As Be Cd Ni Pb Sb U

Highest 
EPA RfD or 
WHO TDI

49 45 23 454 82 138 68

Dog-1 33 36 9 763 32 5 15

Dog-2 28 38 8 442 19 2 28

Dog-3 26 39 16 351 17 2 21

Dog-4 125 37 10 416 38 2 9

Dog-5 53 34 16 404 119 16 7

Dog-6 54 31 16 626 155 18 10

Dog-7 152 56 14 645 37 7 46

Dog-8 83 109 25 635 46 13 216

Dog-9 206 39 11 361 54 4 34

Dog-10 39 47 10 846 47 48 58

Dog-11 16 31 5 821 20 3 4

Dog-12 111 40 11 354 40 8 34

Dog-14 133 114 42 583 154 15 280

Dog-15 64 77 21 408 69 8 166

Dog-17 107 36 12 349 43 4 16

Dog-18 93 36 10 345 44 8 4

Dog-19 69 50 13 371 25 9 95

Dog-20 46 53 26 504 25 6 90

Dog-21 18 35 ND 339 14 3 33

Dog-22 54 48 11 446 41 4 103

Dog-23 104 65 21 390 34 8 456

Dog-24 73 66 16 556 55 8 192

Dog-25 54 48 12 369 45 5 236

Dog-26 124 54 16 319 33 7 322

Dog-27 168 72 15 309 37 9 510

Dog-28 49 43 14 405 73 5 9

Dog-29 56 33 18 402 72 4 7

Dog-30 33 41 25 590 80 5 5

Dog-31 21 35 40 632 20 3 4

Dog-32 70 32 27 474 23 1 5

Dog-33 57 37 14 609 52 96 4

Dog-34 64 30 11 499 38 2 8

Dog-35 100 41 17 812 76 5 19

Dog-36 58 42 22 1764 97 5 14

2019 Mean 
(µg/serving) 75 49 17 549 51 10 97

2019 Max 
(µg/serving) 206 114 42 1764 155 96 510
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Wherever possible, the most sensitive 
isotope free of spectral interferences 
was chosen for the quantitation.

Results and Discussion
Heavy Metal Concentrations 
2009 and 2019
In 2009, there were significant amounts 
of metals found in the pet food, with 
215 ppm aluminum and over 1 ppm 
of several potentially toxic metals, in-
cluding chromium (2.5 ppm), nickel (3.2 
ppm), lead (6 ppm), and tin (9.4 ppm). 
There was 0.5 to 1 ppm of antimony and 
cobalt. Some foods had correlations of 
ppm levels of nickel and tin showing 
large amounts of potential wear metal 
contamination from the manufactur-
ing equipment. There was even ura-
nium detected in several samples up  
to 1 ppm.

The samples from 2019 still showed 
heavy metal contamination, including 
twice the amount of uranium (1.7 ppm), 
and three times the amount of arsenic 
(0.7 ppm). Lead levels were significantly 
lower overall in the 2019 samples with 
a maximum of 0.5 ppm, as shown in 
Table II.

In 2009, one of the surprises result-
ing from the analysis was the discovery 
of up to 1 ppm of uranium in the pet 
food samples. Later, it was discovered 
there was a correlation of samples 

containing uranium also having signifi-
cant levels of beryllium and thorium,  
as shown in Figure 1. 

In the 2019 study, the levels of ura-
nium, beryllium, and thorium were 
again examined, and it was found that 
the 2019 samples had a greater num-
ber of samples that contained signifi-
cant uranium levels than in 2009. The 
samples set for 2019 contained four-
teen samples over 250 ppb compared 
to only six samples in 2009. Most of 
the 2019 samples were dry dog foods, 
which was also consistent with the 2009 
study, but in the updated samples, 
there were two dry cat foods which 
also measured over 250 ppb, whereas 
in 2009 there were only dry dog food 
samples. Nine 2019 samples contained 
over 500 ppb and four had over 1 ppm, 
with the highest sample at 1.7 ppm  
of uranium.

Exposure and Daily Limits
In 2009, as was stated earlier, there 
were no limits or guidelines for heavy 
metals in pet food, so limits were 
used for human exposure from the 
U.S. Environmental Protection Agency 
(EPA) and World Health Organization 
(WHO). Average pet size was stan-
dardized to 50 lbs for a dog and 10 
lbs for a cat. At the time of the 2009 
study, a survey of feeding habits was 

conducted amongst the owners of the 
donated pet food. Most owners in gen-
eral fed their pet approximately one cup 
of food per 10 lbs of body weight per 
day. After the publication of the study, 
some parties (pet food companies) ex-
pressed concern and criticism for the 
amount of food being fed and there-
fore the potential elemental exposure. 
In light of these comments, in the 2019 
study, veterinary guidelines for the feed-
ing of pets limited the food consump-
tion to approximately three cups of dry 
dog food and one-half cup of dry cat 
food daily. 

During the interim between studies, 
the 2011 FSMA was implemented. In the 
act, there was further guidance on the 
safety of pet food, but, again, no lim-
its were expressed for heavy metals or 
toxic elements in pet food so updated 
human limits from the WHO and the 
EPA were used as guidelines. Reference 
daily dosages (RfD) and tolerable daily 
intake (TDI) for the pets were calculated 
(Tables III and IV) to estimate exposure 
from the various foods tested. 

Dog Food Exposure Results
The 2019 samples results were cal-
culated for a serving of three cups of 
dry dog food intended for a 50-lb dog 
(Table V) and compared to calculated 
limits (Table III). Mercury results were 

TABLE VI: Comparison of exposure of selected elements in 2009 and 2019 dog food samples

Element EPA 
(RfD µg)

WHO 
(TDI µg)

2009 
Mean 
(µg)

2019 
Mean 
(µg)

2009 
Max (µg)

2019 
Max (µg)

2009 
Mean % 

Limit

2019 
Mean % 

Limit

2009 
Max % 
Limit

2019 
Max % 
Limit

As 7 49 41 75 74 206 84% 154% 152% 420%

Be 45 None 6 49 22 114 13% 109% 49% 253%

Cd 23 23 20 17 39 42 87% 74% 170% 183%

Ni 454 272 377 549 833 1764 83% 121% 183% 389%

Pb None 82 59 51 280 155 72% 63% 341% 189%

Sb 9 138 46 10 289 96 34% 7% 210% 70%

U 68 14 70 97 259 510 103% 142% 381% 750%
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TABLE VII: Table of 2019 select toxic metal concentrations in 1 cup of cat dog food (µg per serving) and comparison 
to 2009 Results.

2019 Cat (µg/
serving) As Cd Ni Pb U

Max EPA RfD 
or WHO TDI 10 5 91 16 14

Cat-1 5 1 92 9 ND

Cat-2 35 2 120 12 0

Cat-3 40 4 91 12 1

Cat-4 6 5 110 2 1

Cat-5 7 ND 35 5 ND

Cat-6 11 5 80 17 25

Cat-7 5 3 50 8 16

Cat-8 13 6 60 13 29

Cat-9 2 2 81 14 0

Cat-10 6 3 71 12 16

Cat-11 10 1 99 18 ND

Cat-12 16 2 93 8 2

Cat-13 13 2 85 15 ND

Cat-14 4 2 119 5 5

Cat-15 24 2 102 10 0

Cat-16 8 2 109 7 8

Cat-17 2 1 94 4 0

Cat-18 6 1 123 6 1

Cat-19 26 1 119 12 1

Cat-20 29 2 99 12 0

Cat-21 9 0 52 3 0

Cat-22 27 1 134 10 5

Cat-23 6 2 174 13 0

2019 Mean (µg) 14 2 112 11 5

2019 Max (µg) 40 6 399 43 29

2019 Mean 
% Limit 140% 40% 123% 69% 36%

2019 Max % Limit 404% 120% 438% 269% 207%

2009 Mean (µg) 9 3 94 39 2

2009 Max (µg) 18 4 191 355 14

2009 Mean 
% Limit 94% 51% 104% 243% 17%

2009 Max 
% Limit 176% 84% 210% 2216% 97%

not included in 2019 data because of 
technical issues. 

The exposure for many of the ele-
ments increased from 2009 to 2019 

as well as the proportion of samples 
with high levels of metals. In 2009, 
arsenic was high for 44% of dog food 
samples, but in 2019, 70% of samples 

exceeded the highest WHO daily limit 
for 50 lbs of body weight. Nickel ex-
posure overages also increased from 
22%, exceeding limits in 2009 to al-
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most 46% over in 2019. Some exposures 
for lead and cadmium dropped from 
2009 to 2019. Lead dropped from 22% 
over limit in 2009 to 11% over in 2019. 
Cadmium dropped from 28 to 19%  
over RfD.

The concentration of heavy or toxic 
metals in the food increased for most el-
ements, with higher mean and maximum 
results in 2019 compared to the results 
from 2009 (Table V). In both studies, the 
maximum measured elemental content 
approached or exceeded allowable 
daily limits of exposure. In 2009, arsenic 
concentration was 84 (mean) to 152% 
of the limit, but in 2019, arsenic ranged 
from 153 (mean) to 420% (maximum) 
of the highest WHO limit, as seen in  
Table VI.

Cat Food Exposure Results
Cat food, similar to dog food, found in-
creases in concentrations of trace ele-
ments from 2009 to 2019. The total num-
ber of samples with levels that exceeded 
limits increased as did the overall con-
centrations of elements, such as arsenic, 
nickel, and uranium. The majority of cat 
food samples had arsenic levels above 
the WHO TDI. The highest samples con-
tained over 400% the limit. As was found 
in the dog food, lead levels were slightly 
lower in the 2019 samples compared to 
the 2009 data, as seen in Tables VII.

Conclusions
The quality control procedures used in 
the past to produce cat and dog food 
were not equal to foods for human 
consumption as was shown in the 2009 
study. This fact was particularly apparent 
in dry cat and dog food formulas, which 
might contain up to a dozen different 
ingredients, such as animal parts, meat 
byproducts, cereals, fillers, nutrients, 
and essential minerals. 

The enactment of the FSMA did in-
clude pet food in the scope of food 
safety, but still there are no definitive 
limits for heavy and toxic metals for pet 
food which can either be derived from 
raw materials (such as fillers, grains, cere-
als, or meals) or processing equipment. 
Essential minerals like calcium and phos-

phorus are manufactured from industrial 
chemicals, which could possibly contain 
other trace metal impurities. The pur-
pose of the original study and the up-
dated 2019 study was not to track down 
the source of the elements and contami-
nation found in pet food, but an attempt 
to evaluate significant levels of metals in 
the food.

The interest in this study and its pre-
decessor becomes relevant when the 
data is compared to the EPA RfD and 
WHO TDI values. These are guidelines 
that are set down by experts in the sci-
entific, medical, and health care com-
munities, based on decades of research 
into toxicity. In lieu of validated limits for 
dogs and cats, we choose to be cautious 
and use the human limits to compare ex-
posure levels potentially found in an ani-
mal’s daily consumption of dry pet food. 

The metal content of many of the dif-
ferent pet foods is significantly higher 
than EPA and WHO values, when ad-
justed for the average weight of a dog 
and cat. We do not know the chemical 
composition or speciation of the heavy 
metals found in these foods, and there-
fore, we do not know their uptake or bio-
availability, and we also do not know if 
the EPA RfD and WHO TDI values apply 
the same to animal physiology. 

The 10 years between the two pet 
food studies did not show any major 
drops in heavy metal contamina-
tion despite the enactment of the 
FSMA. Some of the lead levels have 
dropped but other potentially toxic 
metals have increased, including ar-
senic, nickel, and uranium. The 2019 
samples showed uranium in cat food 
unlike the 2009 study which only 
found uranium in the dog foods. 
There are many studies regarding 
heavy metals and toxic metals in 
human foods which go undetected, 
so it is not surprising that pet food is 
still not comprehensively tested for  
metals contamination.
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IR SPECTRAL INTERPRETATION WORKSHOP

Library Searching

One of the biggest practical limitations 
of infrared spectroscopy is its difficulty 
in analyzing mixtures. The root cause 
of the problem is that the more differ-
ent types of molecules there are in a 
sample, the more difficult it becomes 
to figure out which peaks are from  
which molecules.

Brian C. Smith 

In a previous column, we discussed 
a number to techniques to make the 
mixture analysis problem easier, includ-

ing purification, spectral subtraction, and li-
brary searching (1). At that time, I promised 
to write a future column with more details 
on library searching and spectral subtrac-
tion. A search of my records shows that I 
never wrote that column, and I apologize 
for that. This column, therefore, focuses on 
library searching, and a future column will 
focus on spectral subtraction.

Spectral Comparisons
Spectral comparisons, where a known 
reference spectrum is compared to an 
unknown spectrum to assist in its iden-
tification, is an important tool in infra-
red spectral interpretation (2). I am old 
enough that I began interpreting spectra 
before personal computers were invented.  
Back in those Jurassic days, to identify an 
unknown one had to compare the sample 
spectrum to paper copies of known spec-
tra kept in hundreds of green three-ring 
binders. It could take hours of poring over 
these dusty tomes to find the correct li-
brary match. The company back then 
that published these spectra was called  
Sadtler Chemical (3).

Fortunately, computerized library 
searching now exists. In this technique, an 
unknown spectrum is compared to a col-
lection of known infrared spectra kept in a 
digital infrared spectral library. Revealing 
my age once again, the first Fourier trans-
form infrared (FT-IR) system I ever used 
that had computerized library searching 
capabilities took 15 min to complete one 

library search! I should point out that this 
system had a computer, manufactured 
by the FT-IR maker, with a whopping 64 
kb of memory. Here in 2021, I think my 
toaster has more computing capability 
than my FT-IR computer did back then.  
Today, of course, library searches of thou-
sands of spectra take place in a flash.

Regardless of the computer, a library 
search is performed by mathematically 
comparing your unknown spectrum to 
each of the spectra in a library. If there 
are 1000 spectra in the library, then 
1000 comparisons will be performed.  
The library search software uses what is 
called a search algorithm to generate a 
number describing how similar, or differ-
ent, the two spectra are. This number is 
called a Hit Quality Index (or HQI, for short), 
and it is discussed later on in the column.

Where Can I Buy Infrared  
Spectral Libraries?
To perform library searching, the first 
thing you have to do is obtain some li-
braries. I normally don’t call out individual 
companies in this column, but there are 
only a handful of companies selling infra-
red spectral libraries, so I will name sev-
eral here as a convenience to my readers. 
I apologize if I leave anyone out.

The company with perhaps the largest 
collection of infrared spectral libraries is 
what was Sadtler, became Bio-Rad, and 
is now part of Wiley (3–5). According to 
their website, Wiley has available 264,000 
spectra you can search against (5).  
Access to these libraries is normally done 
via a leasing arrangement. 
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Another vendor that sells infrared 
spectral libraries is Sigma-Aldrich (6).  
As far as I can tell, their entire collec-
tion consists of about 100,000 spectra.  
A couple of smaller companies that sell in-
frared spectral libraries include ST Japan 
(7) and Fiveash Data Management (8). A 
Google search will also turn up some free 
libraries on the internet. My experience 
with free libraries is that they are gener-
ally small and specific to a narrow range of 
samples, and sometimes the data are not 
correct because they have not been vet-
ted properly. As a result, be very careful 
when using free libraries off the internet. 
The libraries you purchase may come on a 
compact disk, be copied to your comput-
er’s storage device, or installed on your 
company’s computer network.

Ultimately, the best source of infrared 
spectral libraries is you. Most FT-IR soft-
ware packages allow you to build your 
own libraries. I strongly encourage this, 
because only you have access to the 

sample types typical of your work. You 
can even build multiple libraries of your 
own of different types. For example, you 
could build your own polymer, gas phase, 
and inorganics library, and search appro-
priate unknowns against them. Every time 
you come across a new sample for which 
you have a good identification, add it to 
an appropriate library. Spectra you add to 
your libraries become de facto references.  
For this reason, please make sure your 
data is of high quality, you are certain of 
the identification, and the data matches 
the instrumental resolution of the other 
spectra in the library (9).

What About the Instrumental 
Resolution of Library Spectra?
Instrumental resolution is a measure of 
how well a spectrometer distinguishes 
spectral features from each other (9).  
In FT-IR, instrumental resolution is mea-
sured in cm-1. For example, a spectrum 
measured at 8 cm-1 resolution can resolve 

features that are 8 cm-1 or further apart 
(9). When library searching is performed, 
the unknown and library spectra must 
be measured at the same instrumental 
resolution. This is why when you purchase 
infrared spectral libraries, they come in 
different resolutions. For example, the 
same library might be available in 8 cm-1 
and 4 cm-1 resolutions. When purchasing a 
library, you must make sure that the librar-
ies’ resolution matches that of the samples 
you will be measuring.

The Search Process
What Libraries Should I Use?
After starting up your library searching 
software package, you will need to choose 
which libraries to search against. It may be 
tempting to try the shotgun approach 
and search your sample spectrum against 
all the libraries you have, but this may end 
up being a waste of time. Think about the 
nature of your sample. For example, a 
spectrum of a polymer searched against 
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a gas phase spectral library will never pro-
duce good results. On the other hand, a 
polymer spectrum searched against a 
large organics library might yield good 
results if the repeat unit of the polymer is 
similar to any of the molecules in the library.  
Judicious choice then of what libraries you 
search against is important.

What Wavenumber 
Regions Should I Use?
Another thing to think about before 
performing a library search is to select 
what wavenumber region or regions to 
use. Typically, the default region in use 
by your search software will be the en-
tire spectrum, lets say 4000 to 400 cm-1.  
However, the software will typically allow 
you to choose spectral regions to include 
or exclude from the search, and this some-

times makes sense. For example, if your 
sample spectrum has unwanted water 
vapor or CO2 peaks, you should exclude 
those regions from your search, since they 
are not part of the sample and their pres-
ence can throw off your search results.  
Additionally, if a sample is a mixture and 
you have identified a major component, 
excluding its peaks from a search might 
make the search more sensitive to the 
identity of minor components.

Some years ago, while I was consulting 
for a forensics laboratory, they had a prob-
lem distinguishing between the methyl 
(CH3-) and ethyl (CH3-CH2-) variants of a 
controlled substance using library search-
ing. They were using the sample’s full 
spectrum in the search. Considering the 
chemical differences between the two 
variants, I thought it made sense to look 

at the C-H stretching region, which is from 
3200 to 2800 cm-1 as we have discussed in 
previous columns (2). A comparison of the 
spectra of the two variants in this region is 
seen in Figure 1.

Note that the spectra are similar but 
not identical. By narrowing the wavenum-
ber region used in the search to that seen 
in Figure 1, a library search was then able 
to distinguish between these two variants 
and the problem was solved. This a real 
and powerful example of how judiciously 
choosing the spectral regions used in a 
search can improve search results.

What Search Algorithm Should I Use?
A search algorithm is the mathematical 
calculation used to compare two spec-
tra to each other and generate a HQI.  
A discussion of these algorithms is beyond 
the scope of this article, but you can find 
more info in the help function of your library 
search software or here (9).

Most library searching software pack-
ages present you with a choice of search 
algorithms. The differences between these 
algorithms is that some emphasize peak 
position, some emphasize peak height, 
and some strike a balance between the 
two. Algorithms with the word “deriva-
tive” in them tend to emphasize peak 
positions, algorithms with the words “ab-
solute” or “absolute value” tend to em-
phasize peak heights, and two algorithms 
that strike a balance are euclidean distance  
and correlation (9).

From my own experience, I find that 
balanced algorithms, such as correlation 
and euclidean distance, are good for gen-
eral search purposes. However, if a given 
search algorithm does not produce satis-
factory results, it is all right to change the 
search algorithm and see if it improves 
your results. It is generally easy to switch 
search algorithms in library search software 
packages, so this is a parameter you can  
experiment with.

The Search Report
Recall that the number of spectral com-
parisons performed equals the number 
of spectra in your library. Manually sorting 
through all these matches would be a chal-
lenge, but fortunately the search software 
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program organizes the hits and presents 
the best ones in the form of a search re-
port. An example of a search report is seen 
in Figure 2. The “unknown” spectrum was 
of pure polystyrene, and the correlation 
search algorithm was used.

The table at the bottom of Figure 2 lists 
the identity of the eight best hits along 
with the HQIs and the library where the 
example spectrum was found. In the soft-
ware used in this example, a 0 to 100 HQI 
scale was used, where 100 is a perfect 
match, and 0 is the worst possible match. 
Also note that the search report shows the 
sample spectrum and the spectra of the 
best matches. The best match, with an 
HQI of 93.18, is of pure polystyrene, which 
is good and expected. The second best 
match, with an HQI of 85.90, is of a mix-
ture of polystyrene and another polymer.  
This makes sense, since impure poly-
styrene should be a worse match than  
pure polystyrene.

Making Sense of the HQI
HQIs are useful indicators of spec-
tral similarity, but they are not perfect. 
Random similarity in the noise and ar-
tifacts between two spectra can give 
search results more similar than reality.  
Conversely, random differences in noise 
and artifacts between two spectra can 
make them poorer matches than reality. 
This is why the HQI by itself should never 
be used identify a sample. I have seen in-
experienced people look at a search re-
port, incorrectly assume the first match in 
the table identifies the sample, and suffer 
career-ending consequences. 

Search algorithms are just mathemati-
cal formulas; they do not understand 
spectroscopy or chemistry and make 
mistakes. I cannot emphasize enough the 
importance of always visually comparing 
the sample spectrum to that of the best 
library matches. The HQI is not a measure 
of the probability of having found the 
right answer; it is not a measure of purity. 
It is strictly used to organize the matches 
for a given search. The search will always 
produce a result whether there are any 
good matches or not, and the fact that 
there is a result does not mean you have 
identified the sample.

Ultimately, it is your job as the user of 
the search software, and not the com-
puter’s (since you have a brain and eye-
balls), to make the final conclusion as to 
the identity of a sample based on a library 
search. The library search narrows things 
down for you; it is your job to make the 
final decision as to whether two spectra 
are a match or not.

How then do we interpret the HQI?  
At minimum, the range of the HQI can be 
useful. Assuming a 0 to 100 HQI scale as 
discussed above, matches between 80 
and 100 are excellent and may be good 
enough to obtain an identification. HQIs 
between 50 and 80 are good, but typically 
not good enough for a complete identi-
fication. However, you can often times 
obtain information about the functional 
groups present from matches of this qual-
ity. Lastly, a HQI less than 50 is a poor re-
sult, and is generally not useful.

What Do I Do About  
Poor Search Results?
You could panic, but that is not an ap-
propriate response for a scientist, unless 
said scientist is being chased by a griz-
zly bear (more on that in a later column). 
Ultimately, bad library search results are 
not necessarily your fault—you are at the 
mercy of the libraries you have access 
to. If, by chance, your unknown looks 
nothing like any of the spectra in your 
libraries, there is not much to be done 
about it. This is an argument then for hav-
ing access to a large number of library 
spectra so you can maximize the prob-
ability of finding a good match. Addition-
ally, remember that you can experiment 
with wavenumber regions and search 
algorithms to try and improve your  
search results. 

Conclusions
Infrared spectral library searching is use-
ful in identifying unknowns and in mixture 
analysis. It works by mathematically com-
paring your sample spectrum to a col-
lection of spectra kept in a digital library. 
HQI measures how similar or different two 
spectra are. However, the HQI only ranks 
the quality of the matches for a given 
search, and should not be used by itself to 

make an identification. Visual comparison 
of the sample and library spectra should be 
used in combination with the HQI achieve 
a sample identification. Experimenting 
with the search algorithm and wavenum-
ber region may improve search results.
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Analysis of a Mixture Solution  
Using Silver Nanoparticles  
Based on Surface-Enhanced  
Raman Spectroscopy (SERS)

Scopolamine and promethazine can 
be used as a substitute for heroin. It is 
relatively fast and simple to use surface-
enhanced Raman spectroscopy (SERS) 
for the detection and monitoring of drug 
usage. Silver nanosol is an enhanced 
substrate that is commonly used in the 
SERS technique; the Raman signal of 
the sample is amplified by the substrate. 
However, for the detection of mixtures, 
the competitive adsorption of different 
components relative to the substrate will 
result in difficult qualitative identifica-
tion of spectra. By taking advantage of 
this defect, the adsorbed components 
of a mixture were separated from silver 
nanoparticles by centrifugation, thus 
changing the mixing ratio of the two 
components in the mixture. As a result, 
the proportion of the components with 
strong adsorption in the mixture is rela-
tively reduced. Thus, the components 
with weak adsorption can be displayed 
in the spectrum of the mixed solution. 

Lin Bao, Siqingaowa Han, and Wuliji Hasi 

Heroin is one of the most widely 
used narcotics in the world, and 
it is a key target to be monitored 

because of its addictive quality and the 
difficulty in quitting the addiction (1–6). 
After long-term use, heroin will cause se-
rious damage to the nervous system of 
the human body, and will also adversely 
affect judgment, possibly causing harm 
to the addict or society (4,7,8). Some drug 
rehabilitation institutions use less harm-
ful drug-like substances as substitutes to 
reduce the suffering of drug addicts and 
damage to their nervous system (9–14). 
For example, a mixture of buprenor-
phine, scopolamine, and promethazine,  
referred to as BSP, has been used be-
cause its toxicity is much lower than that 
of heroin (15). However, long-term use of 
BSP will still cause great damage to the 
human body (9,10). Because the price of 
BSP is low and it is easily accessible, it 
has become an alternative drug for some 
drug users. Therefore, it is necessary to 
engage in the detection and monitoring 
of this new type of drug abuse.

Surface-enhanced Raman spectros-
copy (SERS) is a combination of Raman 
spectroscopy and nanotechnology, and it 
can enhance the Raman signal by 7–10 or-

ders of magnitude when the tested sam-
ple is near or adsorbed on a substrate at 
the nanometer scale (16–19). The Raman 
spectrum of each sample is specific, and 
can be qualitatively identified as the fin-
gerprint of the sample.

There are two popular viewpoints 
about the enhancement mechanism of 
SERS: One viewpoint is electromagnetic 
enhancement, and the other viewpoint is 
chemical enhancement (17,20). Electro-
magnetic enhancement generally refers 
to the enhancement of Raman signals by 
the strong electromagnetic field gener-
ated by the local surface plasmon (LSPR) 
excited by the rough surface of metal 
materials or the surface of metal nanopar-
ticles (21). The chemical mechanism refers 
to the contribution of Raman scattering 
independent of the electromagnetic en-
vironment (such as plasma polaritons). 
The increase in SERS signal is usually at-
tributed to electron transfer between the 
adsorbed molecule and the substrate. 
Current research results show that the 
two enhancement mechanisms gener-
ally play a role at the same time, and that 
signal amplification effect of electromag-
netic enhancement is greater than that of 
chemical enhancement. Based on these 
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enhancement phenomena, the SERS signal can be improved to 
some extent through substrate design or gap control (22–25).

Surface-enhanced spectroscopy as a drug detection tech-
nology has become increasingly mature (26–29). Because of its 
characteristics, it is more suitable for the detection of drugs in 
solution than many other analytical techniques. Compared with 
other detection technologies, the advantages of SERS lie in the 
simple operation of the instrument, the uncomplicated pretreat-
ment of the sample before detection, the fast detection time, 
and the convenience of the portable instrument for the in situ 
detection of samples (30).

For SERS detection of mixtures, there are two problems as-
sociated with direct detection: One is the overlapping of peaks, 
and the other is competitive adsorption (31). Overlap of spectral 
peaks is most likely to occur when the molecular configurations 
of the components of the mixture are relatively similar.

There are some differences in the molecular configuration of 
the two components we tested. They were distinguished from 
the spectrum of the mixture as described in our previous studies 
(15). From the spectral observation, there is no chemical reaction 
of the two components after mixing; that is, no new substance 
is formed. The current study focuses on eliminating the interfer-
ence of competitive adsorption in practical detection.

Experimental
Apparatus
A BWS415-785H portable Raman spectrometer (B&W Tek, Inc.) 
was used to obtain the spectral data. The maximum working 
power of the Raman spectrometer was 0.3 W. The laser wave-
length was 785 nm. After spectrum acquisition, the spectrum 
is smoothed and the baseline was corrected by the instrument 
software.

The morphology of nanoparticles was characterized by a high-
resolution field emission scanning electron microscope (Hitachi 
Company). The dynamic light scattering test was measured by 
a PALS/90P particle size analyzer (Brookhaven Instruments Co., 
Ltd.). A Cary 4000 UV-vis spectrophotometer was also used (Agi-
lent Technology Co., Ltd.).

Reagents
Potassium iodide (KI), silver nitrate (AgNO3), sodium citrate 
(C7H5Na3O7), and ascorbic acid (C6H8O6) were purchased from 
Sinophram Chemical Reagent Co., Ltd. Scopolamine hydrobro-
mide powder (1G) and promethazine hydrochloride powder (5G) 
were purchased from Dalian Meilun Biotechnology Co., Ltd.

Sample and Substrates Preparation
The solutions of scopolamine and promethazine were obtained 
by diluting scopolamine hydrobromide and promethazine hydro-
chloride, respectively, with deionized water, are used to obtain 
solutions with different concentrations. Each solution is mixed 
with the substrate at the same time.

 The preparation of the silver nano-substrate is as follows: 
Soluble silver salt nitrate (AgNO3) was used as an oxidant, and 

ascorbic acid was used as the reducing agent to prevent the ag-
gregation of silver nanoparticles. Sodium citrate was used as the 
stable solution. Their concentrations in the initial solution were 
0.168 mg/mL, 0.105 mg/mL, and 0.873 mg/mL. First, the water 
bath condition was prepared at 30 oC. Then, the three concentra-
tions (soluble silver salt nitrate, ascorbic acid, and sodium citrate) 

FIGURE 1: SEM image of silver sol substrate.
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were placed in the bath proportional to 
each other, then the solutions (sols) were 
stirred continuously for 15 min with a 
magnetic mixture and both sol and na-
nosol are used. Then, the temperature 
of the water bath was continually raised 
to the boiling state and stayed at that 
temperature level for 2 h until the color 

turned grayish-green. Then, the sol was 
refrigerated after cooling. Before using 
it, the sol needed to be centrifuged and 
purified to remove the smaller particles 
and improve the monodispersibility of 
the particles. Ultrasonic oscillation dis-
persion was performed before the test 
was used.

Results and Discussion
Figure 1 shows the SEM characterization 
of the silver sol substrate. The main pro-
cess used is described in the literature 
(32). The silver nanoparticles are basically 
in a spherical state, and there is no mixing 
of other shapes of the substrate. Figure 2a 
shows the UV absorption spectrum, and 
the scanning range is from 300 nm to 800 
nm. The absorption resonance peak is ap-
proximately 439 nm, which is consistent 
with the absorption peak of the silver sol. 
Figure 2b shows the statistical weight dis-
tribution of the particle size of the silver 
sol measured by dynamic light scatter-
ing (DLS) technology. Among them, 60 
nm particles account for the largest pro-
portion in the system, with its statistical 
weight being the total number of particles 
set to 100% and the statistical weight of 
other particle sizes compared with its 
value as the ordinate value of other par-
ticle sizes. It can be seen that several main 
particle sizes are distributed at 50–80 nm.

The SERS spectra of 10 ppm (3.5 x 10-5 
M) promethazine and 6 ppm (2 x 10-5 M) 
scopolamine were used to compare the 
mixture, as shown in Figures 3a and 3c. 
It should be noted that because the sig-
nal of scopolamine is weak, the intensity 
of scopolamine is exaggerated by about 
three times. When the molar concentra-
tion ratio of the two mixtures was 1:1 (1.5 
x 10-5 M), a weak Raman signal of sco-
polamine was detected at 1002 cm-1.  
As shown in Figure 3b, the characteristic 
peaks in the mixture mainly belong to 
promethazine. However, in the previous 
study, when the concentration of the two 
components was the same, the spectrum 
was mainly the spectrum of scopolamine 
(15). The difference is that in our current 
study, the mixture was in contact with the 
silver nanoparticles at the same time; in 
the previous study, scopolamine was first 
added to the silver nanosol (nanosolu-
tion), and then the promethazine was sub-
sequently added. From the trend of these 
two spectra, we can deduce that there is 
a competitive adsorption phenomenon 
when they are mixed simultaneously. 
Promethazine will mask the characteristic 
peak of scopolamine at the same concen-
tration, which is not conducive to identify-
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ing the spectrum of the mixture. What is more troublesome is 
that in the actual mixing ratio, the concentration of scopolamine 
is much lower than that of promethazine. To enhance the signal 
of scopolamine, we added potassium iodide into the mixture 
system to increase the strength of scopolamine.

To improve the signal of scopolamine in the mixed solution 
in Figure 3, we added potassium iodide (1 M). As shown in 
Figure 4, the signal of scopolamine at 1002 cm-1 increases with 
the addition of electrolytes, but it greatly decreases compared 
with the detection of scopolamine at the same concentration 
alone. Moreover, the concentration ratio of the silver sol we 
used is further increased, and the signal should be stronger 
in theory than what is shown in Figure 4. The characteristic 
peaks of promethazine in the spectrum of the mixed solution 
are basically all displayed. Promethazine of the same concen-
tration was added to the electrolytes for independent detec-
tion and is compared with the mixture spectrum, as shown in 
Figure 5. The position and intensity of the peak of the mix-
ture spectrum are almost the same as that of promethazine 
alone. Table I compares the intensity of the mixture spectrum 
with that of promethazine when it is separately detected in 
several main characteristic peaks. The results show that the 
signal of promethazine was dominant even though both of 
them were enhanced. This further shows that the enhanced 
signal of the two is mainly caused by the molecules adsorb-
ing on the silver nanoparticles. The addition of electrolytes 
did not change the adsorption ratio of the two but further 
reduced the distance between nanoparticles and enhanced  
their signal.

In the mixture with the same concentration, the signal of 
scopolamine is weak, which is not conducive to spectral recog-
nition. The more difficult problem is that the concentration of 
promethazine with strong adsorption is much higher than that 
of scopolamine in the actual ratio. It can predict the difficulty 
of actual detection. To verify this assumption, we mixed them 
according to the actual ratio, in which the mass concentration 
of scopolamine is 10 ppm (3.3 x 10-5 M), and the doping of pro-
methazine is 1670 ppm (5.9 x 10-3 M). Through SERS detection, 
as shown in Figure 6a, scopolamine in the actual ratio cannot be 
identified in the Raman spectrum. Only the characteristic peaks 
of promethazine can be identified, which is consistent with the 
expected results.

According to the experimental verification, the nanoparticles 
in the silver sol are relatively easy to separate from the solution, 
as shown in Figure 8. For example, most of the nanoparticles 
will be located at the bottom of the tube after high-speed 
centrifugation. Figure 8a shows the original sol solution, and 
the supernatant after centrifugation is shown in Figure 8b. We 
used this method in combination with the “defects” of com-
petitive adsorption to separate the components of the mixture 
in solution. After the mixed solution was added to the silver 
sol and then centrifuged, the silver sol traveled to the bot-
tom of the centrifuge tube. Some samples adsorbed on the 
silver nanoparticles were separated from the mixed solution.  

The adsorption of promethazine is stronger than that of scopol-
amine. Thus, promethazine should be the main component sep-
arated. The proportion of mixture in the remaining supernatant 
changed: The proportion of promethazine decreased, and the 
relative concentration of scopolamine increased. After repeating 
this several times, the characteristic peak of scopolamine can be 
seen in the mixed solution.
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First, we centrifuged the mixed solu-
tion at a high speed for 20 min and re-
moved the supernatant for detection. 
The results as shown in Figure 6b indi-
cate that there was no signal of scopol-
amine. The signal intensity of prometha-
zine greatly changed, indicating that the 
concentration of promethazine changed 
accordingly. However, the signal inten-
sity of promethazine in the supernatant 

increased because the relationship be-
tween concentration and signal intensity 
in the higher concentration range is not 
necessarily consistent. This is mainly be-
cause of the intensity saturation effect in 
SERS detection.

After the first centrifugation, the super-
natant was again mixed with concentrated 
silver sol and prepared for the second 
centrifugation. After the second centrifu-

gation, the supernatant was removed for 
testing, and the results are shown in Fig-
ure 6c. The 1034 cm-1 signal intensity for 
promethazine changed, indicating that 
the concentration also changed, but the 
main peak at 1002 cm-1 for scopolamine 
still did not appear. On this basis, we 
continued to centrifuge the supernatant 
mixture of the previous step, and the su-
pernatant after centrifugation was de-
tected, as shown in Figure 6d. The signal 
of scopolamine was finally detected, and 
the signal strength of promethazine was 
much weaker. At the concentration of the 
mixture according to the actual use ratio, 
it was finally detected that both existed in 
the spectrum.

In the mixed solution, according to the 
actual ratio, we selected 1002 cm-1 so we 
can clearly see the change of the spec-
trum of scopolamine in the process, which 
is shown in Figure 6. Figure 7 displays the 
results in a column chart. Although the 
first three times have weak intensity, they 
are below the detection limit so they can 
be regarded as the absence of scopol-
amine. The fourth time is the success of 
the actual detection of scopolamine.

Conclusions
We used simple experimental conditions 
to identify the spectrum of a solution 
mixture and utilized the disadvantageous 
SERS detection conditions to create a 
means of separating mixtures. This solves 
the problem that the strong adsorption 
component in the mixture can inhibit 
the weak adsorption component in the 
Raman spectrum. It should be noted that 
in the process of continuous centrifuga-
tion, the mixed solution is diluted to a cer-
tain extent. Although the relative concen-
tration ratio of scopolamine is increasing, 
the concentration of scopolamine itself is 
decreasing, and therefore, the number of 
centrifugations needs to be properly con-
trolled. The amount of silver sol used for 
centrifugation also requires optimization. 
Compared with other methods of sepa-
rating mixtures, the procedure described 
herein is simple, and it is not only a fea-
sible new method for the SERS detection 
of solution mixtures, but also for a rapid 
screening of new alternative drugs.
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TABLE I: Comparison of the main characteristic peaks of the two spectra

Raman Shift 
(cm-1)

Mixture 
Intensity (AU)

Promethazine 
Intensity (AU) RSD (%)

1034 43228.32 37251.13 10.50

1105 15536.29 16314.15 3.45

1250 9833.036 10170.52 2.39

1569 9159.041 8409.041 6.04
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Enhanced Raman and Mid-Infrared 
Spectroscopic Discrimination of  
Geographical Origin of Rice  
by Data Mining and Data Fusion 

Data mining and fusion of Raman and 
mid-infrared (mid-IR) spectra was 
studied to improve the identification 
ability for geographical origins of rice. 
Relative standard deviation (RSD) 
analysis can predict whether there 
are outlier Raman spectra. Hierarchi-
cal clustering analysis (HCA) can find 
out the potential outlier data, and then 
RSD analysis can finally determine the 
outlier data. The recognition accuracy 
of the model built by eliminating the 
outlier data was higher than that of the 
model using all the data. The identifica-
tion accuracy of the data fusion model 
was 97.8%, 4.5% higher than that of the 
Raman and mid-IR models. The model 
was further applied to identify the geo-
graphical origins of 10 japonica rice 
varieties, with an accuracy of 96.7%.  
A combination of data mining and data 
fusion can enhance the discrimination 
ability for the geographical origin of 
rice using a combination of Raman and 
mid-IR spectroscopy.

Min Sha, Dongdong Gui, Peng Li, Zhengyong Zhang,  
Yu Huang, Minqin Jiang, and Jun Liu

Rice is one of the most impor-
tant cereal crops. It is rich in 
protein, fat, carbohydrates, 

and other nutrients (1,2). Its quality 
is influenced by many factors, such 
as genetics, growing conditions, and 
processing (3). With living standards 
improving, geographical indication 
products are becoming more popu-
lar among consumers because of 
their better quality. Meanwhile, the 
phenomenon of confusion or adul-
teration appears, bringing unfair eco-
nomic benefits to the fraudsters and 
destroying the credibility of consum-
ers to producers (4). Therefore, it is 
necessary to develop a reliable tool 
to identify the geographical origin of 
rice for consumers, honest produc-
ers, retailers, and governments.

Sensory identification (5), biologi-
cal identification (6,7), chemical iden-
tification (stable isotope [8,9]), trace 
elements (10,11), volatile components 
(12–14), and other technologies have 
been widely used to identify the geo-
graphical origin of rice. Among them, 
cheap and fast spectral technologies, 
combined with pattern recognition 
methods, are becoming more pop-

ular, and are generally used in the 
analysis of multicomponent samples. 

The literature reports the appli-
cation of Raman spec troscopy in 
identifying the geographical origin 
of r ice. For example, Hwang and 
others reported the identification 
of Korean and imported rice with 
the recognit ion accuracy of 98% 
(15). Kim and co-authors identified 
rice that came from China and Korea 
with the recognition accuracy of 
96% (16). Feng and others identified 
rice that originated from dif ferent 
provinces in China with the highest 
recognition accuracy of 100% (17,18). 
Mos t  of  the r ice samples used 
in these studies are shelled r ice 
grains, so only the information of 
components outside the rice grains 
are collected. It is well known that 
the weight percentages of carbo-
hydrates, protein, fat, and water in 
rice grains are about 70–80%, 7–8%, 
1–2%, and 11–12%, respectively, and 
the distribution of the components 
in r ice grains is inhomogeneous 
(19). Besides, the rice processing 
technology, such as polishing, will 
cause dif ferences on the sur face  

Spectroscopy papers have undergone a double-blind peer review process and are available on our open-access website.



March 2021   Spectroscopy 36(3)  35www.spectroscopyonline.com

PEER-REVIEWED RESEARCH

of rice. Therefore, the Raman spec-
tra obtained are insuf ficient to re-
f lect the information of the whole 
composition of rice. To analyze the 
rice grains accurately, they need to 
be pulverized and sieved to obtain 
the rice f lour sample as evenly as 
possible (20). In addition, the exist-
ing literature focused on the identi-
fication of geographical origins and 
varieties of rice and other inhomo-
geneous products mainly obtain the 
spectral information based on the 
average of two or three measure-
ments (21). The possibility of outlier 
data caused by large f luctuations 
is not taken into account, and the 
accuracy of the data by taking the 
average is unknown. To make the 
obtained spectra reflect the sample 
information more comprehensively, 
it is necessary to collec t enough 
spectra and eliminate the outliers. 

A s  t he  g row ing env i ronment 
changes, so does the content or 
s truc ture of components in r ice, 
thus the position and intensity of 
the absorption peaks of infrared 
spec tra are dif ferent, and these 
dif ferences can be used to reflect 
the regional characteristics of rice 
products (22). Xia and colleagues 
used near- infrared spec troscopy 
(NIR) and Fisher’s linear discrimi-
nant to discriminate Xiangshui rice 
wi th the accurac y of 10 0% (23).  
I n  t h e  d i s c r i m i n a t i o n  o f  n o n -
Xiangshui rice originated from nine 
provinces, 92.3% of the modeled 
samples were classified correctly, 
and 90.9% of the validated sam-
ples were correctly discriminated. 
Compared with the NIR spectrum, 
the absorption peak of the mid-IR 
spectrum is usually sharper, with 
good resolut ion and high peak 
value. Nowadays, the updated mid-
IR spectrometer in the market does 
not require sample preparat ion, 
greatly saving testing time, and is 
an ideal fast detection technique. 
However, the application of mid-IR 
spectroscopy in identifying the geo-
graphical origin of rice is rare.

The above methods for identifi-
cation of the geographical origin 
of rice are mostly based on a single 

technique that can not reflect the 
composition information of rice suf-
ficiently. For example, artificial falsi-
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fication of specific chemical indica-
tors will cause serious interference 
to chemical identification methods, 
so the reliabilit y of identif ication 
results is poor. Moreover, the exist-
ing identification methods are com-
monly aimed at rice samples grown 
in dif ferent countries or dif ferent 
prov inces in  the same count r y.  
The geographical areas are far apart 
from each other, making identifica-
tion relatively easy. There have been 
many reports on the application of 
data fusion technology in food qual-
ity detection (24,25). Sun and others 
established a model for identifying 
of f ic ial rhubarb using NIR spec-
troscopy and mid-IR spectroscopy, 
using data fusion strategies to im-
prove the classification model and 
allow the correct classification of all 
the samples (26). Hohmann and as-
sociates can effectively distinguish 
a total of 205 tomato samples of 
nine varieties from seven farms with 

an accuracy rate of 95 to 100% by 
combining proton nuclear magnetic 
resonance, mid-IR spec troscopy, 
and isotope ratio mass spectrome-
try (27). According to the literature, 
data fusion of Raman and infrared 
spectra for geographical identifica-
tion of rice is rarely reported.

Therefore, in this work, rice prod-
ucts grown in four geographical re-
gions (Xijiang, Panjin, Jiansanjiang, 
and Wuchang) in nor theast China 
were taken as representative exam-
ples to develop an excellent identi-
fication model. Rice samples were 
refined, crushed, and screened to 
obtain relatively uniform rice f lour 
samples. Raman and mid-IR spec-
tra were obtained. Outlier Raman 
spectra were eliminated. A model 
was established by support vector 
machine based on data fusion of 
Raman and infrared spectra aimed 
at improving the identification accu-
racy and reliability for geographical 

origins of rice. Finally, the promotion 
and application value of the estab-
lished method and model were studied 
in 10 kinds of rice.

Materials and Methods
Samples
For this experiment, 10 types of geo-
graphical indication rice products 
were collected from different areas of 
China, as seen in Figure S1 (Supple-
mental figures and tables, designated 
by an S before their number, can be 
found with this article on the Spec-
troscopy website). Fangzheng rice, 
Jiansanjiang rice, Wuchang rice, and 
Xiangshui rice were all grown in Hei-
longjiang province. Yanbian rice and 
Xijiang rice were both grown in Jilin 
province. Xinghua rice and Heheng 
rice were grown in Jiangsu province. 
Panjin rice was grown in Liaoning prov-
ince. Yutai rice was grown in Shandong 
province. All of the rice samples were 
cultivated in 2017 and 2018, and col-
lected in different planting areas to 
ensure they are representative of the 
samples. Xijiang, Panjin, Jiansanji-
ang, Wuchang, Xiangshui, Yanbian, 
Fangzheng, Heheng, Xinghua, and 
Yutai rice were collected from 18, 30, 
21, 21, 30, 15, 33, 21, 21, and 33 po-
sitions, respectively. Two samples 
were collected in each position, each 
sample took about 2 kg of rice, and 
all the samples were japonica rice with  
specific varieties.

Instruments and Equipment
Rice milling process mainly used paddy 
huller (NA12345) and rice mill (NA-JCB) 
which were both produced by Kemai 
Instrument Co., Ltd. A vertical grinder 
(15B, Baling Electric Appliance Co., 
Ltd.) was used to crush rice samples, 
and the diameter of stainless steel sieve 
in it was 0.6 mm. Raman spectra were 
recorded using a portable laser Raman 
spectrometer (Prot t-ezRaman-d3,  
Enwave Optronics), samples were sim-
ply transferred on a quartz glass with 
2 mm thick. Mid-IR spectra were re-
corded using an attenuated total reflec-
tance (ATR) Fourier transform infrared 
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spectrometer (Nicolet IS-10, Thermo  
Fisher Scientific).

Methods
Sample Preparation
Rice samples were processed accord-
ing to the requirements of the first 
grade japonica rice in GB/T 1354-
2018. Then, 20 g of each grain sam-
ple was slowly added to the grinder 
within half a minute and crushed for 
2 min to ensure complete crushing. 
The rice flour obtained was screened 
by 100 and 140 mesh sieves succes-
sively. Rice flour with the size of 100–
140 mesh was stored in a freezer and 
balanced to room temperature in a 
dryer before spectral analysis.

Spectrum Collection
The parameters for Raman spec-
trum acquisition were as follows. 
The excitation wavelength of laser 
was 785 nm, the laser power was 
450 mW, the temperature of the 
charge-coupled detec tor (CCD) 
detector was -85 °C, the spectrom-
eter operated from 250 to 2339 cm-1 
with a resolution of 1 cm-1, and the 
number of scans was three with each 
having an accumulation time of 4 s.  
Five replicated spectra were acquired 
at different positions for each sample.  
The total test time of a sample was 
about 2 min, including sample load-
ing, testing (five times), spectrum sav-
ing, and desktop cleaning.

The parameters for the mid-IR 
spectrum acquisition were as follows:  
The spectrometer operated from 525 
to 4000 cm-1 with a resolution of 0.4821 
cm-1, and each sample was scanned 
32 times. An appropriate amount of 
rice flour was covered on the testing 
window and was compacted for test 
subsequently. All the samples were 
analyzed in triplicate. The total test 
time of a sample was about 2.5 min.

Data Analysis
To remove interfering and irrelevant 
information from the original spec-
tral data, pretreatment should be 
done before data analysis. In this 

work, Raman spec tra and mid-IR 
spectra were denoised by a wden 
wavelet function (28), which elimi-
nated the ef fec t of scat tering by 
mult iplicat ive scat ter correc t ion 
(29), and normalized by the map-
minmax function (30) successively.  
As Raman measurement was rela-
tively interfered by the environment 
and instrument, relative standard 
deviation (RSD) analysis and hier-

archical clustering analysis (HCA) 
(31,32) were comprehensively ap-
plied to eliminate outliers. Then, the 
average Raman spectrum and mid-
IR spectrum for each sample were 
taken as the representative spectra. 
Finally, a suppor t vector machine 
(SVM) (33) was used to establish the 
model, with the radial basis function 
(RBF) (34) being used. In addition, 
Gamma and C parameters were op-
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timized by a grid search technique 
within the region of 10-5 to 105. The 
data of one sample of each sam-
pling point was used as the train-
ing set, and the data of the another 
sample was used as the prediction 
set. All of the data preprocessing 
and model construction were based 
on Matlab 2019b.

Results and Discussion
Spectrum Analysis
Taking Xijiang, Panjin, Jiansanjiang, 
and Wuchang rice as examples that 
originated from three neighboring 
provinces in nor theast China, the 
spectra of sample 1 in position 1 
were pretreated and shown in Fig-
ure 1. The peaks of Raman spec-
tra mainly located in the region of 
251–1500 cm-1, especially located at 
492, 878, 952, 1094, 1126, 1139, 1273, 

1351, 1390, and 1474 cm-1. Through 
RSD analysis, it was found that the 
bands with high stability of mid-IR 
spectra located at 578–4000 cm-1, 
and the peak s main ly  occur red 
at 859, 928, 997, 1080, 1150, 1640, 
2930, and 3290 cm-1. Therefore, the 
data of these regions were adopted 
for subsequent analysis. As seen in 
Figure 1, the spec tra of the four 
kinds of rice from different produc-
ing areas were highly similar which 
were dif ficult to be recognized by 
naked eyes.

Model Analysis
Geographical Identification  
of Rice by Raman Spectroscopy
In the region of 251–1500 cm-1, taking 
Xijiang rice as an example, RSD val-
ues of the five Raman spectra of each 
sample are shown in Table I. Because 

of the fluctuation of instrument and 
environment, inhomogeneity of rice 
flour, and some man-made factors, the 
RSD values generally fluctuated below 
14%. Among them, the RSD value of 
some rice samples were so large that 
there might be outlier data.

The HCA of five Raman spectra of 
each sample was performed to find 
out the possible outlier spectrum 
intuitively. Euclidean distance (35), 
standard Euclidean distance, city 
block distance, and the congruence 
coefficient (cosine) (36) were used as 
distance measures to quantify the 
similarity between spectra. Linkage 
methods, such as average linkage 
(37), single linkage, and complete 
linkage, were applied to construct 
the clustering tree (38). Taking sam-
ple 1 of Xijiang rice in position 2 for 
example, the values of cophenetic 

TABLE I: The detailed information for Xijiang rice

Sample 
Position

Sample 1 Sample 2

Spectrum 
Number RSD1

a (%) Outlier 
Spectrum RSD2

b (%) Spectrum 
Number RSD1

a (%) Outlier 
Spectrum RSD2

b (%)

1 xj111–115 14.7 xj111,xj112 12.5 xj121–125 13.2 --- 13.2

2 xj211–215 17.2 xj211,xj212 13.9 xj221–225 12.6 --- 12.6

3 xj311–315 13.4 --- 13.4 xj321–325 13.2 --- 13.2

4 xj411–415 12.1 --- 12.1 xj421–425 14.6 xj422 12.1

5 xj511–515 12.5 --- 12.5 xj521–525 14.0 --- 14.0

6 xj611–615 12.5 --- 12.5 xj621–625 12.3 --- 12.3

7 xj711–715 12.7 --- 12.7 xj721–725 12.3 --- 12.3

8 xj811–815 17.2 xj812, xj814 14.0 xj821–825 12.3 --- 12.3

9 xj911–915 10.2 --- 10.2 xj921–925 14.4 xj922, 
xj923 12.2

10 xj1011–1015 12.1 --- 12.1 xj1021–1025 14.7 xj1023 12.6

11 xj1111–1115 12.4 --- 12.4 xj1121–1125 10.9 --- 10.9

12 xj1211–1215 11.8 --- 11.8 xj1221–1225 13.9 --- 13.9

13 xj1311–1315 12.8 12.8 xj1321–1325 13.8 --- 13.8

14 xj1411–1415 14.5 xj1414, 
xj1415 12.2 xj1421–1425 13.3 --- 13.3

15 xj1511–1515 13.4 --- 13.4 xj1521–1525 11.7 --- 11.7

16 xj1611–1615 11.3 --- 11.3 xj1621–1625 17.4 xj1623, 
xj1624 14.0

17 xj1711–1715 12.4 --- 12.4 xj1721–1725 10.9 --- 10.9

18 xj1811–1815 12.1 --- 12.1 xj1821–1825 14.5 xj1823 12.1
a RSD value of all the data
b RSD value of the valid data
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correlation coefficient for different 
methods were calculated and shown 
in Table SI. The best created cluster-
ing tree using seuclidean distance 
measure and average linkage method 
was shown in Figure 2a. Spectra 1 
and 2 had high similarity and were 
clustered together while spectra 3–5 
clustered together. The distinction 
between spectra 1 and 2 and spectra 
3–5 was very obvious. However, it was 
still difficult to judge the outlier data.

The HCA was further carried out 
on the ten spectra of Xijiang rice 
in position 2, and the results were 
shown in Figure 2b. Spectra 1 and 
2 were significantly dif ferent from 
the other eight spectra, indicating 
that they were the potential outli-
ers. After eliminating spectra 1 and 
2, RSD value of the remaining three 
Raman spectra of sample 1 in posi-
tion 2 was 13.9% which was within 
the f luctuation range (below 14%), 

confirming that spectra 1 and 2 were 
the outlier data. Spectra 3–8 in Fig-
ure 2b were mixed together indicat-
ing that the difference between the 
two rice samples in the same posi-
tion was small. The above research 
results showed that RSD analysis 
can predict whether outliers exist,  
HCA analysis can find out the poten-
tial outliers, and the outliers can be 
finally identified and verified by RSD 
analysis. Combination of RSD analy-

TABLE III: Identification results of models using different PCs 

Number of the 
First Several PCs Accumulated Contribution Rate (%) Recognition Accuracy (%) Total Recognition Time (s)

2 84.3 54.4 1.8

3 89.0 71.1 1.9

4 92.0 78.9 1.9

6 96.1 83.3 2.0

9 98.2 91.1 2.1

13 99.1 94.4 2.4

179 100.0 93.3 9.4

TABLE II: The results of models using various data 

Number of the 
First Several PCs

Accumulated 
Contribution 
Ratea (%) 

Recognition 
Accuracya (%)

Total Recognition 
Timea (s)

Recognition 
Accuracyb (%)

13 80.1 95.6 2.4 85.6

19 85.4 95.6 3.0 86.7

27 90.4 92.2 3.2 88.9

39 95.1 92.2 3.6 91.1

51 98.1 93.3 4.1 91.1

179 100.0 93.3 9.4 91.1

a model using the data after eliminating the outlier spectra
b model using all the data



www.spectroscopyonline.com

PEER-REVIEWED RESEARCH

sis and HCA provides an accurate 
and reliable method to eliminate  
the outliers. 

The same analysis of Xijiang rice in 
the remaining 17 positions was pro-
cessed, and the outlier data found 
are shown in Table I. It was found that 
outlier data exist in all the rice sam-
ples which RSD values were over 14%, 
and the RSD values after eliminating 
the outlier data were all less than 
14%, indicating that the existence 
of outlier data can be preliminarily 
judged by the fluctuation range of 
the RSD value. The 15 outlier spectra 
in Table I should be eliminated for 
subsequent modeling. Furthermore, 
after analyzing the Raman spectra of 
Panjin, Jiansanjiang, and Wuchang 
rice, it was found that there were 
seven, four, and one outlier spectra, 
respectively (Tables SI–SIV) 

Average of Raman spectra af ter 
eliminating outlier data were taken 
as the representative spectra for 
each sample, values of the Raman 
absorbance were taken as indepen-
dent variables, and the geographical 
origin was used as the dependent 
variable. Thus, matrix X (180 × 1250) 
and matrix Y (180 × 1) were formed. 
The number of samples was 180, and 
1250 was the number of independent 
variables, along with one dependent 
variable. The recognition accuracy 
of the model based on matrix X was 
93.3%, and the total recognition time 
was 54.9 s. Another prediction model 
was established by using the data 
without eliminating the outlier spec-
tra, the recognition rate was 91.1%, 
and the recognition time was 55.1 s.

Taking into account the relevant 
variables will influence the efficiency 
of the model, and the principal com-
ponent analysis (PCA) can extract 
the main information of the data,  
so PCA of matrix X was carried out 
before modeling, and the results were 
shown in Table II. The accumulated 
contribution rate of the first 179 prin-
cipal components (PCs) was 100.0%, 
demonstrating that the 179 PCs can 
represent the overall information of 

matrix X. The recognition accuracy of 
the model using the 179 PCs was con-
sistent with the result of matrix X, but 
its value was not the largest in Table 
II, indicating that there are some use-
less information in the first 179 PCs. 
When the numbers of PCs were 13, 
15, 16, 18–21, and 24, the recognition 
accuracy was the highest (95.6%), and 
the total recognition time was 2.4–3.0 
s, which were both better than those 

of the model built with matrix X. The 
misidentified samples were shown in 
Figure 3a. When matrix X was used, 
there were six wrongly classified sam-
ples. Three samples of Xijiang rice 
were classified as Panjin rice, three 
samples of Panjin rice were classified 
as Jiansanjiang rice. When the num-
bers of PCs were 13, 15, 16, 18–21, and 
24, four samples of Panjin rice were 
wrongly classified as Jiansanjiang 
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rice. It could be seen that the results 
varied greatly using different data, 
and the recognition accuracy of the 
model built by eliminating the outlier 
data was always higher than that of 
the model using all the data (Table II). 

Geographical Identification  
by Mid-IR Spectroscopy 
Mid-IR spectra of 180 samples of 
four kinds of rice were averaged as 
the representative spectra for each 
sample, values of the transmittance 
of mid-infrared spectra were taken 
as independent variables, and the 
geographical or igin was used as 
dependent variable. Thus, matrix Z 
(180 × 7100) and matrix Y (180 × 1) 
were formed, with 7100 being the 
number of independent variables. 
The recognit ion accuracy of the 
model based on matrix Z was 93.3%, 
and the total recognition time was 
307.4 s. PCA was then carried out 
on matrix Z, the results of the iden-
tification model using different PCs 
were shown in Table III. With the in-
crease of the number of PCs, total 
recognition time increased when 
the number of PCs was between 13 
and 15 and identification accuracy 
was 94.4%, which was the largest in 
Table III and much better than the 
results using matrix Z. When the 
identification accuracy was 94.4%, 
five samples were wrongly identi-
f ied as can be seen in Figure 3a. 
Distribution of rice samples in the 
space formed by the f i r s t 3 PCs 
was shown as Figure 3b. Panjin rice 
was close to Xijiang and Jiansanji-
ang rice, some samples of Xijiang 
and Jiansanjiang rice were crossed 
together, and a few samples of Ji-
ansanjiang and Wuchang rice over-
lapped. These samples were easy to 
be misjudged during identification, 
which explained why the recognition 
accuracy was only 71.1% when the 
number of PCs was three.

Identification Results After Data Fusion
Transitions between vibrational and 
rotational levels of chemical bonds 

or functional groups absorb infra-
red light, so the infrared spectrum 
can reflect the information of func-
tional groups or chemical bonds 
contained in molecules. Besides, 
infrared absorption takes place only 
when there is a change of dipole mo-
ment. Raman spectrometer analyses 
the scat tered light with dif ferent 
frequency from the incident light to 
obtain the information of molecular 
structure. Dif ferent from infrared 
spectrum, both polar molecules and 
nonpolar molecules can produce 
Raman spectrum. Therefore, if the 
two spectra is integrated, the infor-
mation representing the composition 
of rice can be more comprehensive. 
According to the above experimen-
tal results, the misclassified samples 
corresponding to the best identifica-
tion accuracy of Raman and mid-IR 
spectroscopy were entirely different, 
so data fusion of the two spectra can 
play a complementary role.

Low-level fusion of data was con-
ducted first. Matrix X (180 × 1250) 
and matrix Z (180 × 7100) were fused 
into matrix M (180 × 8350) accord-
ing to the method shown in Figure 
S2 (taking sample 1 of Xijiang rice 
in position 1 as an example). It was 
found that the recognition accuracy 
of the model using matrix M was 
97.8% and the recognition time was 
387.3 s. Data fusion by this method 
had achieved ideal recognition ac-
curacy, but the recognition took a 
long time. 

To overcome the low recognition 
efficiency, mid-level data fusion was 
used. According to the results in 
Table II and Table III, 13, 15, 16, 18–
21, and 24 PCs corresponding to the 
highest identification accuracy of 
Raman spectroscopy were selected 
respectively, and new data matrices 
were constructed by combined with 
13 and 15 PCs corresponding to 
the highest identification accuracy 
of mid-IR spectroscopy. The newly 
established classif ication models 
had the highest recognition accu-
racy of 97.8% (Table SV), which was 

4.5% higher than that of Raman and 
infrared spectroscopy. One sample 
of Xijiang rice was wrongly identified 
as Wuchang rice while one sample of 
Wuchang rice was wrongly identified as 
Jiansanjiang rice.

Promotion and Application of Data 
Mining and Data Fusion Technology
The promotion and application of data 
mining and data fusion technology 
were further studied. Xiangshui rice, 
Yanbian rice, Fangzheng rice, Heheng 
rice, Xinghua rice, Yutai rice, and the 
above studied four kinds of rice were 
identified together. The matrix of 
Raman spectra data was 486 × 1250, 
the identification accuracy was 91.8%, 
and the identification time was 430.9 s. 
The matrix of mid-IR spectra data was 
486 × 7100, the identification accuracy 
was 91.8%, and the identification time 
was 2497.7 s, the model was time-con-
suming and its identification accuracy 
was not ideal. To improve the recog-
nition accuracy and efficiency of the 
model, data mining (Tables SVI–SXI) 
and mid-level data fusion method was 
adopted. When the number of Raman 
PCs was 40 and the number of infrared 
PCs was 35, the identification accu-
racy of the ten kinds of rice was 96.7%, 
and the identification time was 40.1 s.  
The results were relatively ideal and 
consistent with expectations.

Conclusion
Taking Xijiang rice, Panjin rice, Jiansan-
jiang rice, and Wuchang rice as exam-
ples, this paper explored the influence 
of data fusion of Raman spectra and 
mid-IR spectra on the geographical 
identification model. First of all, rice 
samples were processed, crushed, and 
screened, and rice flour sized between 
100–140 mesh were obtained. Second, 
Raman spectra and infrared spectra of 
each sample were collected at 5 mea-
surement positions and in triplicate re-
spectively. The collected spectra were 
pretreated by denoising, multivariate 
scattering correction and normalization 
successively. RSD analysis and HCA 
were applied to detect of outliers from 
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Raman data of each sample. Then, the 
Raman spectra and mid-IR spectra of 
each sample were averaged respec-
tively. Finally, the geographical iden-
tification models were established by 
support vector machine using Raman 
data, mid-IR data and the fusion of the 
two data. The results showed that RSD 
analysis can predict whether there are 
outliers, HCA analysis can find out the 
potential outlier data, and then RSD 
analysis can finally determine the out-
lier data, the comprehensive applica-
tion of RSD analysis and HCA provides 
an accurate and reliable method to 
eliminate the outliers. In addition, data 
fusion realized complementarity of 
Raman and mid-IR spectra information, 
and the accuracy of the established 
model was 97.8%, which was 4.5% 
higher than that of Raman data and 
mid-IR data. The data fusion method 
explored in this paper provided more 
accurate and reliable data for identify-
ing geographical origins of rice quickly. 
Besides, the identification accuracy of 
10 kinds of rice with close geographical 
location was 96.7%, which was higher 
than 90.0%, demonstrating that the 
data pretreated method and the data 
fusion model proposed were effective 
and worthy popularization. 
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The 2021 Employment and 
Salary Survey: Covid-19 
and the New Virtual World 

Last year was undoubtedly a year of 
significant challenges and change—
Covid-19, working from home, masks, 
social distancing, and virtual connec-
tions to laboratories and conferences. 
This year’s Spectroscopy salary and 
employment survey explores the im-
pact on spectroscopic scientists from 
around the world and their reactions, 
responses, and outlook. 

Jerome Workman, Jr.

As always, we report on over-
all salary trends and how they 
compare to past years, referring 

all the way back to the 2001 survey. But 
unlike previous reports about Spectros-
copy salary surveys, which focused heav-
ily on the numerical details of the salary 
data (1,2), this year we looked beyond 
the numbers to focus more on broader 
trends of workplace satisfaction and ca-
reer attitudes. We asked about job secu-
rity and solicited respondents’ outlook 
for a future working in this challenging 
and technically complex field. We in-
quired about what spectroscopy profes-
sionals consider their greatest workplace 
concerns. We asked how many respon-
dents are searching for new opportu-
nities and why—and we looked at the 
effects caused by working in a Covid-19 
environment in the workplace. We also 
asked respondents for their outlook for 
the remainder of 2021. In sum, we looked 
into multiple factors of the current and 
future employment environment.

The Overall Picture
As would be expected, we found that 
nearly all professionals working in the 
field of spectroscopy are more con-
cerned than usual about the security 
of their jobs and incomes, given the 
Covid-19 pandemic. Nevertheless,  

respondents are fairly optimistic about 
the coming year. Nearly 64% of respon-
dents expect the economy to recover 
to its previous levels during 2021,  
and 65% believe their job situation 
will improve during 2021. There is also 
strong confidence among our respon-
dents (60%) that their own organiza-
tions will improve their revenue streams 
and organizational health in 2021. 

Nevertheless, one-third of respon-
dents (35%) indicated that they are in-
terested in seeking a new employment 
opportunity for reasons unrelated to 
the pandemic, while 44% say they do 
not want to leave their current position 
even if a promising new opportunity 
was presented.

The Covid-19 Effect
As we all know, the Covid-19 declared 
pandemic resulted in dramatic changes 
in working conditions throughout the 
world. Since the pandemic was officially 
declared in March of 2020, nearly one in 
five (15%) respondents were either laid 
off or furloughed; over half (50.5%) have 
limited or no access to their laboratories; 
and, more alarmingly, 34% say they are 
struggling to stay positive during this 
globally impacting situation. 

Nearly all types and sizes of organi-
zations and their operations have been 
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seriously challenged by the pandemic, 
as facilities have been closed or have 
implemented severely restricted access. 
This has forced the adoption of online or 
virtual corporate and university classes, 
meetings, and scientific and business 
conferences—a mandated requirement 
in nearly every situation. According to 
our respondents, the business downturn 
caused by the pandemic has resulted 
in nearly two-thirds (60%) of organiza-
tions downsizing specifically due to the 
Covid-19 lockdown, with an additional 
25% downsizing for reasons not directly 
related to Covid-19. It is noteworthy that 
10% of respondents say their work func-
tions were offshored during this period. 

In spite of the challenges of the 
shutdown, over three quarters (77%) of 
respondents feel they are able to com-
plete their work, and even though half 
(50%) of respondents claim an increased 
workload, two-thirds (65%) are satisfied 
with their current working conditions, 
with 45% saying they actually enjoy the 
new requirement of working from home.

Is It Time for a Job Change?
Despite all the workplace disruptions—
or perhaps because of it—our survey 
results indicate that just four in ten re-
spondents (44%) are not interested in 
seeking a job change. Generally, these 
respondents want to keep their current 
positions because of their current sal-
ary, or because of the location of their 
office and laboratories. Other reasons 
for staying put in current jobs are good 
work team colleagues, good manage-
ment, and high competition for job 
positions. The same percentage (44%) 
would not want to leave their current 
position even if another promising job 
opportunity were presented. 

On the other hand, a little over one-
third of respondents (35%) would leave 
their current positions for a new or bet-
ter opportunity. A full 26% indicated 
they were ready for a career change—
either major or minor. According to re-
spondents, the main general reasons 
for seeking new opportunities are 
higher salary, seeking new challenges, 
or dissatisfaction with their current 

employer. Some respondents have ex-
pressed that they are seeking new em-
ployment for mostly personal reasons 
(Figures 1a–1c). 

Of course, thoughts about job 
change are often linked to perceptions 
of both job security and the strength 
of the job market. One in four respon-
dents (25%) feel their jobs are less se-
cure this year than last year, while about 
the same number (24%) feel they are 

more secure; the rest (51%) say there is 
no change in their job security. Figure 2 
displays the respondent perception of 
their current job security—an essential 
aspect of job satisfaction. 

Almost half of survey respondents 
(55%) believe that the current employ-
ment market for spectroscopists is 
either good or excellent, and only 6% 
think it is poor. One in seven (15%) as-
sess the job market as one where em-

TABLE I: Average reported base salaries in USD from 2001 to 2020 (all re-
spondents)

Survey Year Average Salary (USD) Percent Change vs 
Previous Year

2001 $64,690 (first year) NA

2002 $67,900 5.0%

2003 $68,180 0.4%

2004 $72,140 5.8%

2005 $72,920 1.1%

2006 $77,980 6.9%

2007 $79,605 2.1%

2008 $77,364 –2.8%

2009 $78,807 1.9%

2010 $80,778 2.5%

2011 $84,511 4.6%

2012 $85,060 0.6%

2013 $88,018 3.5%

2014 $88,342 0.4%

2015 $83,209 –5.8%

2016 $82,457 –0.9%

2017 $84,718 2.7%

2018 $91,129 7.6%

2019 $79,711 –12.5%

2020 $86,491 8.5%

2021 $88,025 1.8%

TABLE II: Number of years working in a career associated as a spectroscopist

No. of Years %

Fewer than 5 3.74%

5–9 14.95%

10–15 21.50%

16–20 10.28%

21–35 33.64%

36–40 11.21%

41+ 4.67%
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ployer organizations are competing 
for good candidates, while the rest 
feel that there is moderate (55%) or 
strong (30%) competition from candi-
dates for any acceptable open career 
positions (Figure 3). 

What Factors Are Most  
Important in a Job
The vast majority (95%) of respondents 
say that salary and bonus structure is 
the most important factor in their jobs.  
The survey results indicated that the 
next most important factors (in rank 
order) were job security (93%), the work 
team (88%), intellectual challenge (88%), 
the importance of their work (87%), 
work–life balance (87%), the quality of 
equipment and laboratory space (85%), 
retirement benefits (82%), a tolerant 
work place (82%); and health insurance 
(79%). Those factors ranking lowest in 
importance for job satisfaction were ma-
ternity or paternity leave (27%)—not im-
portant to an older demographic—the 
prestige of the organization (39%), the 
ability to work from home (48%)—not a 
factor this year—and continued training  
and education (62%).

Salary and Bonus Results for 2021
For 2021, 37% of respondents received 
raises, but the vast majority (63%) did 
not. Alarmingly, it was noted that 13% 
experienced a decrease in pay over this 
past year (Figure 4). In our 2020 survey 
(2), we found that 20% of respondents 
did not receive a raise, but for that year 
we did not record any salary cuts for 
full-time professionals. 

Our questions about pay scales indi-
cated that one in twenty (5%) are very 
satisfied with their pay, and feel their 
pay is at the higher end of the market 
value for their jobs. Nearly one-third 
(35%) feel they are paid fairly. A full 
65%, however, feel that they are paid 
at the low end of the scale, or are paid 
below market value. 

For this year’s survey, we recorded 
salaries between $15,000 and $250,000 
USD (a typical range for our surveys). 
The reported mean and median an-
nual salaries for all respondents were 

No Opinion
23%

Agree or
Strongly Agree

35%

Disagree or
Strongly
Disagree

42%

FIGURE 1A: Breakdown of desire to leave one’s current job. The question was, 
“I would like to leave my current job if a new suitable opportunity presented 
itself.”

No Opinion
24%

Agree or
Strongly 
Agree
44%

Disagree or
Strongly
Disagree

32%

FIGURE 1B: Breakdown of desire to leave one’s current job. The question was, 
“I do not want to leave my current position even if another opportunity was 
presented.”

No Opinion
23%

Agree or
Strongly Agree

26%

Disagree or
Strongly
Disagree

51%

FIGURE 1C: Breakdown of desire to leave one’s current job. The question was, 
“I am interested in changing careers.”
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$88,025 and $85,000, respectively, 
indicating the reported salaries are 
similar to those reported over the 
past few years. We note that there 
was a 1.8% increase in average sal-
ary compared to last year. Table I 
displays the annual average salary 
trend since 2001 for all respondents 
(See also Figure 5).

Repor ted bonuses for the 2021 
sur vey were higher for this year 
compared to those in recent years. 
Nearly one-half (47%) of respondents 
reported receiving an annual bonus 
(compared to 54% last year) and the 
bonus amounts ranged from $250 
to $40,000. The mean and median 
bonus values for all respondents re-
ceiving bonuses were $19,228 and 
$11,685, respectively, compared to 
$14,121 and $11,000 last year. 

Respondent Profile
Of the spectroscopy professionals 
from around the world that responded 
to this years’ survey, which was fielded 
in January 2021, the respondents 
were 66.7% male and 33.3% female. 
Respondents were from industr y 
(58.9%), academic institutions (23.4%), 
government or nationally funded labo-
ratories (6.5%), the military (1.9%), and 
(9.4%) from other organizations, such 
as private laboratories, hospitals,  
and medical facilities. 

The various job titles of respon-
dents, in order of occurrence, include 
principal or senior scientist (26.9%), 
scientist or associate (17.6%), man-
ager (14.8%), full professor (8.3%), 
direc tor (7.4%), technician (5.6%), 
CEO, CTO, or president (4.6%), as-
sociate or assistant professor (3.7%), 
laboratory assistant (1.9%), graduate 
student (1%), and other (8.3%). Note 
that 87% of respondents are full-
time employees, while almost 5% are 
part-time employees, and nearly 2% 
are unemployed. Most respondents 
have a significant number of years of 
experience in spectroscopic meth-
ods, with nearly half of survey re-
spondents with over 20 years (Table 
II and Figure 6).

No change

Less secure

More secure

51%

51%

24%

25%

FIGURE 2: Perception of current job security. The survey question was, “How 
secure do you feel in your current position compared to last year?”

Competition for open
positions in my �eld is
moderate.

Competition for open
positions in my �eld is
strong.

Employers are competing
for quali�ed candidates.

55%

15%

30%

FIGURE 3: Strength of the job market for spectroscopists. The survey ques-
tion was, “If it were necessary for you to change jobs this year, how would you 
assess the job market?”

No change
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50%

13%

37%

FIGURE 4: Overall change in salary during this past year. The question was, 
“What was the overall change in your salary during this past year?”
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Summary 
Spectroscopy professionals across 
all fields working in 2020 through 
early 2021 have experienced unprec-
edented challenges and changes dur-
ing this more than extraordinary year.  
Among our respondents, 13% experi-
enced a pay cut this year—likely a re-
sult of Covid-19 shutdown issues—and 
15% were either laid off or furloughed.  
Over half (51%) have limited or no ac-
cess to their laboratories, and 34% say 
they are struggling to stay positive dur-
ing this situation. In spite of all that, over 
three quarters (77%) of respondents feel 
they are able to complete their work de-
spite the unusual challenges of this year. 

They are also fairly optimistic about the 
coming year: Two-thirds of respondents 
expect the economy to recover in 2021, 
and the same number believe their job 
situation will improve during 2021. Our 
respondents also have strong confi-
dence that their employers will have 
improved revenue in 2021 (60%). 

Of course, the ongoing concerns 
related to any workplace remain, pan-
demic or not. We found that the great-
est workplace concerns of profession-
als in the spectroscopy field are salary 
and bonus structure, job security, 
working colleagues and associates, 
intellectual challenge, the importance 
of the work, and work–life balance.

Almost two-thirds (65%) of spec-
troscopists reported they are satisfied 
with their current working conditions, 
even though half of respondents claim 
an increased workload. Just over one-
third of our respondents indicate they 
are interested in seeking a better em-
ployment opportunity beyond their  
current situation. 

We noted that just over one third 
of respondents received raises, while 
the remaining two-thirds did not—and 
13% experienced a decrease in pay 
over this past year. A full two-thirds 
feel that they are either paid at the 
low end of the scale or are paid below 
market value. The mean and median 
annual salaries for the 2021 survey 
are similar to those in the recent past, 
with a slight increase for this year vs. 
the past two survey years (2019 and  
2020 [1,2]). 

All in all, 2021 will be remembered as 
an extremely challenging and confus-
ing year. In spite of it all, professionals 
working in spectroscopy continue to 
remain positive, and to apply them-
selves and their skill sets to improve 
products, the environment, health 
research, and to advance the world  
of chemistry.
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Handheld Raman spectrometer
The NanoRam-1064 hand-
held Raman spectrometer 
from B&W Tek is designed 
for nondestructive iden-
tification and verification 
of raw materials such as 
active pharmaceutical 
ingredients, intermediates, 
and excipients. Accord-
ing to the company, the 
analyzer is suitable for the identification of colored samples, 
natural products, and for differentiating between different 
grades of cellulose, polysorbate, and Opadry.   
B&W Tek, Newark, DE. www.bwtek.com

Atomic emission spectrometer
LECO’s GDS900 glow 
discharge atomic emission 
spectrometer is designed 
for routine bulk elemental 
determination in most 
conductive solid metal 
matrices. According to 
the company, low melting 
alloys, resulfurized steel, 
powder metals, and other 
historically difficult-to-ana-
lyze materials can be analyzed in a production environment. 
LECO Corporation, St. Joseph, MI.  
https://www.leco.com/product/gds900e

Diamond ATR accessory
The IRIS diamond attenu-
ated total reflection 
(ATR) accessory from 
PIKE is designed for 
infrared (IR) sampling for 
powders, gels, liquids, 
solids, and more. Accord-
ing to the company, the 
accessory is suitable for 
research, QA/QC, and 
sample identification.  
PIKE Technologies,  
Madison, WI. 
www.piketech.com

AA Lamps
REFLEX Analytical’s 
selection of hollow 
cathode lamps for 
atomic absorption 
(AA) spectroscopy 
complements its available 
series of tungsten lamps, 
deuterium lamps, xenon 
lamps, photoionization detector (PID) lamps, mercury, and 
mercury-xenon ultraviolet detector lamps. According to the 
company, a selection of more than 1000 lamps for AA and a 
variety of other instrumentation and equipment is available. 
REFLEX Analytical Corporation, 
Ridgewood, NJ. reflexusa.com

Acid vapor cleaning system
Savillex’s VC Ultra acid 
vapor cleaning system 
is designed to use high-
purity acid vapors to acid-
clean up to 40 microwave 
digestion vessels and cov-
ers in a single run. Accord-
ing to the company, cus-
tomized microwave vessel 
cleaning racks minimize 
handling and acid exposure, and pre-loaded cleaning profiles 
eliminate the need for method development.   
Savillex, Eden Prairie, MN. 
www.savillex.com

Extended-range Raman spectrometer
The WP 532 EXR 
extended-range Raman 
spectrometer from 
Wasatch Photonics is 
designed for simultane-
ous measurement of the 
fingerprint region and 
extended functional bands 
using 532 nm excitation. 
According to the company, 
applications include inor-
ganic materials and measurement of gases such as hydrogen.  
Wasatch Photonics,  Morrisville, NC.  
www.wasatchphotonics.com

Software and spectral databases
KnowItAll spectroscopy 
software by Wiley is 
designed to provide tools 
for spectroscopists to 
identify, analyze, verify, 
classify, and manage 
spectra. According to 
the company, its spectral 
library is the world’s 
largest, containing more 
than two million spectra, including IR, MS, NIR, NMR, 
Raman, and UV-vis.  
Wiley, Hoboken, NJ.  
https://sciencesolutions.wiley.com/spectral-databases/ 

Automated microparticle analysis tool
WITec’s ParticleScout 
automated microparticle 
analysis tool has been 
enhanced with features 
that include integration 
time optimization, 
vignetting correction, 
smart zoom, sample 
illumination options, smart 
separation of adjacent particles, and multiple sample area 
targeting. According to the company, the software provides 
for quantitative report formatting to present data using table, 
bar graph histogram, and pie chart templates.  
WITec GmbH, Ulm, Germany. www.witec.de/particlescout/

http://www.bwtek.com
https://www.leco.com/product/gds900e
http://www.piketech.com
http://www.reflexusa.com
http://www.savillex.com
https://wasatchphotonics.com/product/wp-532-er-raman-spectrometer/?utm_source=Spectroscopy&utm_medium=ProductRelease-Mar2021&utm_campaign=WP532EXR
https://sciencesolutions.wiley.com/spectral-databases/?utm_source=spectroscopyonline.com&utm_medium=product&utm_campaign=7010W000002CrNKQA0
http://www.witec.de/particlescout/
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Palm spectrometer
The Breeze palm-held 
spectrometer from 
BaySpec is designed for 
400–2500 nm with a 
one-button operation. 
According to the company, 
the spectrometer is 
suitable for the analysis 
of plastics, illicit drugs, 
pharmaceuticals, 
explosives, biological 
warfare agents, medicine, 
food, and other materials. 
BaySpec Inc., San Jose, CA. www.bayspec.com

Particle analysis module
Renishaw’s particle analy-
sis software module for 
its inVia confocal Raman 
microscope is designed to 
automate the microscope 
so that it can identify 
particles on images, and 
then chemically analyze 
them using Raman spec-
troscopy. According to the 
company, the software 
provides chemical informa-
tion on each particle and its morphology statistics.  
Renishaw, West Dundee, IL. www.renishaw.com

CMOS camera
The Velocity Pro comple-
mentary metal-oxide semi-
conductor (CMOS) camera 
from EDAX is designed to 
provide highspeed elec-
tron backscatter diffrac-
tion (ESBD) mapping with 
high indexing performance 
on realworld materials. 
According to the company, 
the camera is powered by 
a CMOS sensor that is opti-
mized for high-speed ESBD. 
EDAX, Inc., Mahwah, NJ. www.edax.com

Raman microscope
The XperRAM S Raman 
microscope by Nanobase 
is designed to provide 
researchers with precise 
spectrum peak acquisition, 
wide area image scanning, 
and an easy-to-control 
software suite. According 
to the company, the micro-
scope features a transmis-
sion spectrometer to increase spectrum peak efficiency to 
over 90%, and a wide and fast image scanning experience for 
over 200 μm x 200μm.  
Nanobase, Inc., Seoul, South Korea. www.nanobase.co.kr
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For more information, contact us:

As a link between standard AAS instruments and ICP-OES spectrometers contrAA® 800 combines the best of two
worlds: fast sequential and simultaneous multi-element analysis, ease of handling and manageable costs.

     Multi Element: One light source for fast sequential and simultaneous multi-element analysis
     High-Resolution Optics: Interference-free analysis and highest precision
     HD Spectrum: High-resolution 3D spectra display for detailed spectral information
     Dynamic Mode: Extended measurement range of up to 5 orders of magnitude
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